Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'six' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
def _DynamicStitchGrads(op, grad):
"""Gradients for DynamicStitch."""
num_values = len(op.inputs) // 2
indices_grad = [None] * num_values
def AsInt32(x):
return (x if op.inputs[0].dtype == dtypes.int32 else
math_ops.cast(x, dtypes.int32))
inputs = [AsInt32(op.inputs[i]) for i in xrange(num_values)]
if isinstance(grad, ops.IndexedSlices):
output_shape = array_ops.shape(op.outputs[0])
output_rows = output_shape[0]
grad = math_ops.unsorted_segment_sum(grad.values, grad.indices, output_rows)
values_grad = [array_ops.gather(grad, inp) for inp in inputs]
return indices_grad + values_grad
draw.rectangle([0, 0, 4 * grid_size, 4 * grid_size], grey)
fnt = ImageFont.truetype('Arial.ttf', 30)
for y in range(4):
for x in range(4):
o = self.get(y, x)
if o:
draw.rectangle([x * grid_size, y * grid_size, (x + 1) * grid_size, (y + 1) * grid_size], tile_colour_map[o])
(text_x_size, text_y_size) = draw.textsize(str(o), font=fnt)
draw.text((x * grid_size + (grid_size - text_x_size) // 2, y * grid_size + (grid_size - text_y_size) // 2), str(o), font=fnt, fill=white)
assert text_x_size < grid_size
assert text_y_size < grid_size
return np.asarray(pil_board).swapaxes(0, 1)
outfile = StringIO() if mode == 'ansi' else sys.stdout
s = 'Score: {}\n'.format(self.score)
s += 'Highest: {}\n'.format(self.highest())
npa = np.array(self.Matrix)
grid = npa.reshape((self.size, self.size))
s += "{}\n".format(grid)
outfile.write(s)
return outfile
blobs = layer.blobs
param = layer.convolution_param
ksize = _get_ksize(param)
stride = _get_stride(param)
pad = _get_pad(param)
num = _get_num(blobs[0])
channels = _get_channels(blobs[0])
n_in = channels * param.group
n_out = num
func = convolution_2d.Convolution2D(n_in, n_out, ksize, stride, pad,
nobias=not param.bias_term)
func.W.data[...] = 0
part_size = len(blobs[0].data) // param.group
for i in six.moves.range(param.group):
in_slice = slice(i * n_in // param.group,
(i + 1) * n_in // param.group)
out_slice = slice(i * n_out // param.group,
(i + 1) * n_out // param.group)
w = func.W.data[out_slice, in_slice]
data = numpy.array(
blobs[0].data[i * part_size:(i + 1) * part_size])
w[:] = data.reshape(w.shape)
if param.bias_term:
func.b.data[:] = blobs[1].data
with self.init_scope():
setattr(self, layer.name, func)
self.forwards[layer.name] = _CallChildLink(self, layer.name)
import pytest
import six
from cryptography import x509 as crypto_x509
from cryptography.hazmat.backends import default_backend
from ipatests.util import raises, ClassChecker, read_only
from ipatests.util import dummy_ugettext, assert_equal
from ipatests.data import binary_bytes, utf8_bytes, unicode_str
from ipalib import parameters, text, errors, config, x509
from ipalib.constants import TYPE_ERROR, CALLABLE_ERROR
from ipalib.errors import ValidationError, ConversionError
from ipalib import _
from ipapython.dn import DN
if six.PY3:
unicode = str
long = int
NULLS = (None, b'', u'', tuple(), [])
pytestmark = pytest.mark.tier0
class test_DefaultFrom(ClassChecker):
"""
Test the `ipalib.parameters.DefaultFrom` class.
"""
_cls = parameters.DefaultFrom
def test_init(self):
"""
mock_request.path = path.split('?')[0]
path = mock_request.path
except Exception:
pass
if isinstance(path, bytes):
path = path.decode('utf8')
for (method, pattern, func) in self.callbacks:
if http_method != method:
continue
matcher = pattern.match(path)
if matcher:
try:
args = [urlparse.unquote(u) for u in matcher.groups()]
(code, response) = yield func(mock_request, *args)
defer.returnValue((code, response))
except CodeMessageException as e:
defer.returnValue((e.code, cs_error(e.msg, code=e.errcode)))
raise KeyError("No event can handle %s" % path)
assert dsym['cpuName'] == 'any'
assert dsym['headers'] == {
'Content-Type': 'text/x-proguard+plain'}
assert dsym['objectName'] == 'proguard-mapping'
assert dsym['sha1'] == 'e6d3c5185dac63eddfdc1a5edfffa32d46103b44'
assert dsym['symbolType'] == 'proguard'
assert dsym['uuid'] == '6dc7fdb0-d2fb-4c8e-9d6b-bb1aa98929b1'
# Test download
response = self.client.get(url + "?id=" + download_id)
assert response.status_code == 200, response.content
assert response.get(
'Content-Disposition') == 'attachment; filename="' + PROGUARD_UUID + '.txt"'
assert response.get(
'Content-Length') == text_type(len(PROGUARD_SOURCE))
assert response.get('Content-Type') == 'application/octet-stream'
assert PROGUARD_SOURCE == BytesIO(
b"".join(response.streaming_content)).getvalue()
# Login user with no permissions
user_no_permission = self.create_user('baz@localhost', username='baz')
self.login_as(user=user_no_permission)
response = self.client.get(url + "?id=" + download_id)
assert response.status_code == 403, response.content
# Try to delete with no permissions
response = self.client.delete(url + "?id=" + download_id)
assert response.status_code == 403, response.content
# Login again with permissions
self.login_as(user=self.user)
def testPop(self):
w = pointless.PointlessPrimVector('u32')
self.assertRaises(IndexError, w.pop)
w = pointless.PointlessPrimVector('u32', sequence = six.moves.range(1000))
self.assert_(len(w) == 1000)
for i in six.moves.range(1000):
n = w.pop()
self.assert_(n == 1000 - i - 1)
self.assert_(len(w) == 0)
self.assertRaises(IndexError, w.pop)
gt_mb_labels = gt_mb_labels.array
mb_locs = cuda.to_cpu(mb_locs)
mb_confs = cuda.to_cpu(mb_confs)
gt_mb_locs = cuda.to_cpu(gt_mb_locs)
gt_mb_labels = cuda.to_cpu(gt_mb_labels)
loc_loss = cuda.to_cpu(loc_loss.array)
conf_loss = cuda.to_cpu(conf_loss.array)
n_positive_total = 0
expect_loc_loss = 0
expect_conf_loss = 0
for i in six.moves.xrange(gt_mb_labels.shape[0]):
n_positive = 0
negatives = []
for j in six.moves.xrange(gt_mb_labels.shape[1]):
loc = F.huber_loss(
mb_locs[np.newaxis, i, j],
gt_mb_locs[np.newaxis, i, j], 1).array
conf = F.softmax_cross_entropy(
mb_confs[np.newaxis, i, j],
gt_mb_labels[np.newaxis, i, j]).array
if gt_mb_labels[i, j] > 0:
n_positive += 1
expect_loc_loss += loc
expect_conf_loss += conf
else:
negatives.append(conf)
n_positive_total += n_positive
if n_positive > 0:
def __get__(self, obj, type=None):
if obj is None:
return self
return 42
def meth(self):
"""Function."""
return "The Answer"
class CustomDataDescriptorMeta(type):
"""Descriptor metaclass docstring."""
@add_metaclass(CustomDataDescriptorMeta)
class CustomDataDescriptor2(CustomDataDescriptor):
"""Descriptor class with custom metaclass docstring."""
def _funky_classmethod(name, b, c, d, docstring=None):
"""Generates a classmethod for a class from a template by filling out
some arguments."""
def template(cls, a, b, c, d=4, e=5, f=6):
return a, b, c, d, e, f
from functools import partial
function = partial(template, b=b, c=c, d=d)
function.__name__ = name
function.__doc__ = docstring
return classmethod(function)
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library for testing the dataset wrappers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
from task_adaptation.data import base
import tensorflow as tf
@six.add_metaclass(abc.ABCMeta)
class BaseDataTest(tf.test.TestCase):
"""Base class for testing subclasses of base.ImageData.
To use this testing library, subclass BaseDataTest and override setUp().
Pass into BaseDataTest's setUp method the expected statistics for the
specific dataset being tested. These statistics are stored as instance
attributes to be used in the tests.
Attributes:
data_wrapper: Subclass of base.ImageData for testing.
default_label_key: str, key of the default output label tensor.
expected_num_classes: Dict with the expected number of classes for each
output label tensor.
expected_num_samples: Dict containing expected number of examples in the
"train", "val", "trainval", and "test" splits of the dataset.
required_tensors_shapes: Dictionary with the names of the tensors that