Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'pyspark' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
for i in range(len(z)):
u=u+float(z[i])
if(u>1):
return float(u)
else:
return 1.0
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: pagerank ", file=sys.stderr)
sys.exit(-1)
# Initialize the spark context.
spark = SparkSession\
.builder\
.appName("PythonPageRank")\
.getOrCreate()
lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
links = lines.map(lambda batsman: parseNeighbors(batsman)).distinct().groupByKey().cache()
links1=lines.map(lambda batsman: parseNeighbors1(batsman)).distinct().groupByKey().cache()
link=links.map(lambda x:(x[0],float(sum1(list(x[1])))))
#print(links.collect())
ranks = link.map(lambda url_neighbors: (url_neighbors[0],url_neighbors[1]))
#print(ranks.collect())
iterations=0
return key,1
def parseNeighbors(urls):
parts = re.split(r',', urls)
return parts[0],int(parts[2])/int(parts[3])
def parseNeigbors1(urls):
parts = re.split(r',',urls)
return parts[0],parts[1]
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: pagerank ", file=sys.stderr)
sys.exit(-1)
# Initialize the spark context.
spark = SparkSession\
.builder\
.appName("PythonPageRank")\
.getOrCreate()
some_value = float((float(sys.argv[3]))/100)
if (some_value == 0):
some_value = 0.8
lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
links2 = lines.map(lambda urls: parseNeighbors(urls)).groupByKey().mapValues(sum).cache()
ranks=links2.map(lambda x:compute(x[0],x[1]))
prevranks=links2.map(lambda x:compute(x[0],x[1]))
links1=lines.map(lambda urls: parseNeigbors1(urls)).groupByKey().cache()
count_value = 0
count = 0
t = True
parts = re.split(r',+', urls)
return parts[0],parts[1]
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: pagerank ", file=sys.stderr)
sys.exit(-1)
if(int(sys.argv[3])==0):
first=0.80
second=0.20
if(int(sys.argv[3])>0):
first=sys.argv[3]*0.01
second=1-first
# Initialize the spark context.
spark = SparkSession\
.builder\
.appName("PythonPageRank")\
.getOrCreate()
lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
#print(lines.collect())
links = lines.map(lambda urls: parseNeighbors(urls)).distinct().groupByKey().cache()
#print(links.collect())
inter_ranks = lines.map(lambda urls: avg(urls)).distinct().reduceByKey(add)
ranks=inter_ranks.map(lambda x:(x[0],max(x[1],1))).sortBy(lambda x:(x[1],x[0]),False)
#t = ranks.collect()
#print(ranks)
#print("RANKS:",ranks.collect())
def test_spark_dataframe_output_csv():
spark = SparkSession.builder.getOrCreate()
num_df = (
spark.read.format('csv')
.options(header='true', inferSchema='true')
.load(file_relative_path(__file__, 'num.csv'))
)
assert num_df.collect() == [Row(num1=1, num2=2)]
@solid
def emit(_):
return num_df
@solid(input_defs=[InputDefinition('df', DataFrame)], output_defs=[OutputDefinition(DataFrame)])
def passthrough_df(_context, df):
return df
@pipeline
def passthrough():
passthrough_df(emit())
with seven.TemporaryDirectory() as tempdir:
file_name = os.path.join(tempdir, 'output.csv')
result = execute_pipeline(
def test_start_sentry_listener():
spark_context = SparkContext.getOrCreate()
gateway = spark_context._gateway
assert gateway._callback_server is None
_start_sentry_listener(spark_context)
assert gateway._callback_server is not None
from random import random
from operator import add
from pyspark.sql import SparkSession
import PySparkTestInclude
if __name__ == "__main__":
"""
Usage: pi [partitions]
"""
# Make sure we can include this user-provided module
PySparkTestInclude.func()
spark = SparkSession\
.builder\
.appName("PythonPi")\
.getOrCreate()
partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
n = 100000 * partitions
def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 < 1 else 0
count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))
spark.stop()
def spark(request):
"""
Creates a spark context
Parameters
----------
request: pytest.FixtureRequest object
provides access to testing context
"""
spark = (
SparkSession
.builder
.appName('pytest-pyspark-local-testing')
.master('local[2]')
.getOrCreate()
)
request.addfinalizer(lambda: spark.stop())
return spark
# * Create python SparkContext using the SparkConf (so we can specify the warehouse.dir)
# * Create Scala side HiveTestContext SparkSession
# * Create python SparkSession
jgw = launch_gateway(None)
jvm = jgw.jvm
import tempfile
import getpass
hivedir = "file://{0}/{1}/smv_hive_test".format(tempfile.gettempdir(), getpass.getuser())
sConf = SparkConf(False, _jvm=jvm).set("spark.sql.test", "")\
.set("spark.sql.hive.metastore.barrierPrefixes",
"org.apache.spark.sql.hive.execution.PairSerDe")\
.set("spark.sql.warehouse.dir", hivedir)\
.set("spark.ui.enabled", "false")
sc = SparkContext(master="local[1]", appName="SMV Python Test", conf=sConf, gateway=jgw).getOrCreate()
jss = sc._jvm.org.apache.spark.sql.hive.test.SmvTestHive.createContext(sc._jsc.sc())
cls.spark = SparkSession(sc, jss.sparkSession())
return cls.spark
def session():
yield Session(spark_session=SparkSession.builder.appName("AWS Wrangler Test").getOrCreate())
def main():
# Args
mol_pattern = '/home/emountjoy_statgen/data/sumstats/molecular_trait/*.parquet'
out_dir = '/home/emountjoy_statgen/data/sumstats/molecular_trait_2/'
# mol_pattern = '/Users/em21/Projects/genetics-finemapping/example_data/sumstats/molecular_trait/*.parquet'
# out_dir = '/Users/em21/Projects/genetics-finemapping/example_data/sumstats/molecular_trait_2/'
# Make spark session
spark = (
pyspark.sql.SparkSession.builder
.config("parquet.enable.summary-metadata", "true")
.getOrCreate()
)
print('Spark version: ', spark.version)
# Process each
for inf in glob(mol_pattern):
# Load
df = spark.read.parquet(inf)
# Write
outf = os.path.join(out_dir, os.path.basename(inf))
(
df
.write