Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "seaborn in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'seaborn' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

help='draw 2D box')
    parser.add_argument('--draw_bev', default=False, action='store_true',
                        help='draw Birds eye view')
    args = parser.parse_args()
    args.select_seq = [args.select_seq] if isinstance(args.select_seq,
                                                      int) else args.select_seq

    print(' '.join(sys.argv))

    return args


args = parse_args()

# Global Variable
sns.set(style="darkgrid")
FONT = cv2.FONT_HERSHEY_SIMPLEX
FOURCC = cv2.VideoWriter_fourcc(*'mp4v')
OUTPUT_PATH = cfg.OUTPUT_PATH
FOV_H = 60
NEAR_CLIP = 0.15

if args.dataset == 'gta':
    W = cfg.GTA.W  # 1920
    H = cfg.GTA.H  # 1080
    resW = W // 2
    resH = H // 2
    FOCAL_LENGTH = cfg.GTA.FOCAL_LENGTH  # 935.3074360871937
else:
    W = cfg.KITTI.W # 1248
    H = cfg.KITTI.H # 384
    resW = W
def plotHistogram(values, xlabel=None, ylabel=None, title=None, xmin=None, xmax=None,
                  extra=None, extraColor='grey', extraLoc='right',
                  hist=True, showCI=False, showMean=False, showMedian=False,
                  color=None, shade=False, kde=True, show=True, filename=None):

    fig = plt.figure()

    style    = "white"
    colorSet = "Set1"
    sns.set_style(style)
    sns.set_palette(colorSet, desat=0.6)
    red, blue, green, purple = sns.color_palette(colorSet, n_colors=4)

    color = blue if color is None else color
    count = values.count()
    bins  = count // 10 if count > 150 else (count // 5 if count > 50 else (count // 2 if count > 20 else None))
    sns.distplot(values, hist=hist, bins=bins, kde=kde, color=color, kde_kws={'shade': shade})

    #sns.axlabel(xlabel=xlabel, ylabel=ylabel)
    if xlabel:
        plt.xlabel(xlabel) # , size='large')
    if ylabel:
        plt.ylabel(ylabel) # , size='large')

    sns.despine()
def plot_umap(trainer):
    latent_seq, latent_fish = trainer.get_latent()
    latent2d = umap.UMAP().fit_transform(np.concatenate([latent_seq, latent_fish]))
    latent2d_seq = latent2d[: latent_seq.shape[0]]
    latent2d_fish = latent2d[latent_seq.shape[0] :]

    data_seq, data_fish = [p.gene_dataset for p in trainer.all_dataset]

    colors = sns.color_palette(n_colors=30)
    plt.figure(figsize=(25, 10))
    ax = plt.subplot(1, 3, 1)
    ax.scatter(*latent2d_seq.T, color="r", label="seq", alpha=0.5, s=0.5)
    ax.scatter(*latent2d_fish.T, color="b", label="osm", alpha=0.5, s=0.5)
    ax.legend()

    ax = plt.subplot(1, 3, 2)
    labels = data_seq.labels.ravel()
    for i, label in enumerate(data_seq.cell_types):
        ax.scatter(
            *latent2d_seq[labels == i].T,
            color=colors[i],
            label=label[:12],
            alpha=0.5,
            s=5
        )
mmsb_degree = np.load('figures/mmsb_sparse_degree.npy')
kron_degree = np.load('figures/kron_degree.npy')
ba_degree = np.load('figures/ba_degree.npy')

real_clustering = np.load('figures/real_clustering.npy')
graphrnn_rnn_clustering = np.load('figures/graphrnn_rnn_clustering.npy')
graphrnn_mlp_clustering = np.load('figures/graphrnn_mlp_clustering.npy')
mmsb_clustering = np.load('figures/mmsb_sparse_clustering.npy')
kron_clustering = np.load('figures/kron_clustering.npy')
ba_clustering = np.load('figures/ba_clustering.npy')


plt.switch_backend('agg')

sns.set()
sns.set_style("ticks")
sns.set_context("poster",font_scale=1.4,rc={"lines.linewidth": 3.5})

fig = plt.figure()
plt.ylim(0, 0.1)
plt.xlim(0, 50)
plt.tight_layout()
current_size = fig.get_size_inches()
fig.set_size_inches(current_size[0]*1.5, current_size[1]*1.5)
degree_plot = sns.distplot(real_degree,hist=False,rug=False,norm_hist=True,label='Real')
degree_plot = sns.distplot(ba_degree,hist=False,rug=False,norm_hist=True,label='B-A')
degree_plot = sns.distplot(kron_degree,hist=False,rug=False,norm_hist=True,label='Kronecker')
degree_plot = sns.distplot(mmsb_degree,hist=False,rug=False,norm_hist=True,label='MMSB')
degree_plot = sns.distplot(graphrnn_mlp_degree,hist=False,rug=False,norm_hist=True,label='GraphRNN-S')
degree_plot = sns.distplot(graphrnn_rnn_degree,hist=False,rug=False,norm_hist=True,label='GraphRNN')

degree_plot.set(xlabel='degree', ylabel='probability density')
print("Prob exactly 2: " + str(prob_exactly_2))
    print("Prob exactly 1: " + str(prob_exactly_1))
    print("Prob never uninterpretable: " + str(prob_exactly_0))




"""attn_perf_overlap_for_model('yahoo')
attn_perf_overlap_for_model('imdb')
attn_perf_overlap_for_model('amazon')
attn_perf_overlap_for_model('yelp')"""


try:
    sns.set(font_scale=1.5)
    sns.set_style("whitegrid")
except:
    pass


def make_2x2_2boxplot_set(list1_of_two_vallists_to_boxplot, list2_of_two_vallists_to_boxplot,
                          list3_of_two_vallists_to_boxplot, list4_of_two_vallists_to_boxplot, list_of_colorlabels,
                          list_of_two_color_tuples, labels_for_4_boxplot_sets):
    pass


def make_4_4boxplot_set(list1_of_four_vallists_to_boxplot, list2_of_four_vallists_to_boxplot,
                        list3_of_four_vallists_to_boxplot, list4_of_four_vallists_to_boxplot, list_of_colorlabels,
                        list_of_four_color_tuples, labels_for_4_boxplot_sets):
    pass
def draw_group_boxplot(name_list,data_list1,data_list2, label ='Dice Score',titile=None, fpth=None ):
    df = get_df_from_list(name_list,data_list1,data_list2)
    df = df[['Group', 'Longitudinal', 'Cross-subject']]
    dd = pd.melt(df, id_vars=['Group'], value_vars=['Longitudinal', 'Cross-subject'], var_name='task')
    fig, ax = plt.subplots(figsize=(15, 8))
    sn=sns.boxplot(x='Group', y='value', data=dd, hue='task', palette='Set2',ax=ax)
    #sns.palplot(sns.color_palette("Set2"))
    sn.set_xlabel('')
    sn.set_ylabel(label)
    # plt.xticks(rotation=45)
    ax.yaxis.grid(True)
    leg=plt.legend(prop={'size': 18},loc=4)
    leg.get_frame().set_alpha(0.2)
    for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
                 ax.get_xticklabels() + ax.get_yticklabels()):
        item.set_fontsize(20)
    for tick in ax.get_xticklabels():
        tick.set_rotation(30)
    if fpth is not None:
        plt.savefig(fpth,dpi=500, bbox_inches = 'tight')
        plt.close('all')
    else:
np.linalg.norm(p_hat - dcsbm_P) ** 2
# heatmap(dcsbe.p_mat_, inner_hier_labels=labels)
# heatmap(dcsbm_P, inner_hier_labels=labels)
import seaborn as sns


plt.figure()
sns.scatterplot(
    x=latent[:, 0], y=latent[:, 1], hue=dcsbe.vertex_assignments_, linewidth=0
)

#%%
from graspy.embed import LaplacianSpectralEmbed, AdjacencySpectralEmbed

plt.style.use("seaborn-white")
sns.set_palette("Set1")
plt.figure(figsize=(10, 10))
sns.set_context("talk", font_scale=1.5)
sns.scatterplot(x=latent[:, 0], y=latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
ase = AdjacencySpectralEmbed(n_components=2)
lse = LaplacianSpectralEmbed(n_components=2, form="R-DAD", regularizer=1)
ase_latent = ase.fit_transform(graph)
lse_latent = lse.fit_transform(graph)

plt.figure(figsize=(10, 10))
sns.scatterplot(x=ase_latent[:, 0], y=ase_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")

plt.figure(figsize=(10, 10))
sns.scatterplot(x=lse_latent[:, 0], y=lse_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
# A PSD matrix can be created as follows, though is not used in the test.
        # H = H @ H.t()
        eigenvalues = A.symeig(H)[0]
        spectrum_norm = A.max(eigenvalues)
        H /= spectrum_norm

        K = 1024
        n_vec = 1
        eigs = matrix_ops.lanczos_spectrum_approx(H, 100, K, n_vec)
        eig_ref = A.symeig(H)[0]
        import seaborn as sns
        from matplotlib import pyplot as plt
        import pandas as pd
        plt.figure()
        sns.distplot(A.eval(eig_ref), bins=50, norm_hist=True, kde=False)
        sns.lineplot(data=pd.DataFrame(A.eval(eigs), index=np.linspace(-1, 1, K)) )
        plt.savefig("lanczos_wigner.jpg")
dataset.isna().sum()

dataset = dataset.dropna()

origin = dataset.pop('Origin')

dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
dataset.tail()

train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)

sns.pairplot(
    train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde")


train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats

train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')


def norm(x):
  return (x - train_stats['mean']) / train_stats['std']
from __future__ import print_function

import argparse
import sys
import os
import toolshed as ts
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
from itertools import groupby, cycle
from operator import itemgetter
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
try:
    import seaborn as sns
    sns.set_context("paper")
    sns.set_style("dark", {'axes.linewidth': 1})
except ImportError:
    pass
import numpy as np
from cpv._common import bediter, get_col_num, genomic_control

def chr_cmp(a, b):
    a, b = a[0], b[0]
    a = a.lower().replace("_", ""); b = b.lower().replace("_", "")
    achr = a[3:] if a.startswith("chr") else a
    bchr = b[3:] if b.startswith("chr") else b

    try:
        return cmp(int(achr), int(bchr))
    except ValueError:
        if achr.isdigit() and not bchr.isdigit(): return -1
        if bchr.isdigit() and not achr.isdigit(): return 1

Is your System Free of Underlying Vulnerabilities?
Find Out Now