Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'seaborn' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
help='draw 2D box')
parser.add_argument('--draw_bev', default=False, action='store_true',
help='draw Birds eye view')
args = parser.parse_args()
args.select_seq = [args.select_seq] if isinstance(args.select_seq,
int) else args.select_seq
print(' '.join(sys.argv))
return args
args = parse_args()
# Global Variable
sns.set(style="darkgrid")
FONT = cv2.FONT_HERSHEY_SIMPLEX
FOURCC = cv2.VideoWriter_fourcc(*'mp4v')
OUTPUT_PATH = cfg.OUTPUT_PATH
FOV_H = 60
NEAR_CLIP = 0.15
if args.dataset == 'gta':
W = cfg.GTA.W # 1920
H = cfg.GTA.H # 1080
resW = W // 2
resH = H // 2
FOCAL_LENGTH = cfg.GTA.FOCAL_LENGTH # 935.3074360871937
else:
W = cfg.KITTI.W # 1248
H = cfg.KITTI.H # 384
resW = W
def plotHistogram(values, xlabel=None, ylabel=None, title=None, xmin=None, xmax=None,
extra=None, extraColor='grey', extraLoc='right',
hist=True, showCI=False, showMean=False, showMedian=False,
color=None, shade=False, kde=True, show=True, filename=None):
fig = plt.figure()
style = "white"
colorSet = "Set1"
sns.set_style(style)
sns.set_palette(colorSet, desat=0.6)
red, blue, green, purple = sns.color_palette(colorSet, n_colors=4)
color = blue if color is None else color
count = values.count()
bins = count // 10 if count > 150 else (count // 5 if count > 50 else (count // 2 if count > 20 else None))
sns.distplot(values, hist=hist, bins=bins, kde=kde, color=color, kde_kws={'shade': shade})
#sns.axlabel(xlabel=xlabel, ylabel=ylabel)
if xlabel:
plt.xlabel(xlabel) # , size='large')
if ylabel:
plt.ylabel(ylabel) # , size='large')
sns.despine()
def plot_umap(trainer):
latent_seq, latent_fish = trainer.get_latent()
latent2d = umap.UMAP().fit_transform(np.concatenate([latent_seq, latent_fish]))
latent2d_seq = latent2d[: latent_seq.shape[0]]
latent2d_fish = latent2d[latent_seq.shape[0] :]
data_seq, data_fish = [p.gene_dataset for p in trainer.all_dataset]
colors = sns.color_palette(n_colors=30)
plt.figure(figsize=(25, 10))
ax = plt.subplot(1, 3, 1)
ax.scatter(*latent2d_seq.T, color="r", label="seq", alpha=0.5, s=0.5)
ax.scatter(*latent2d_fish.T, color="b", label="osm", alpha=0.5, s=0.5)
ax.legend()
ax = plt.subplot(1, 3, 2)
labels = data_seq.labels.ravel()
for i, label in enumerate(data_seq.cell_types):
ax.scatter(
*latent2d_seq[labels == i].T,
color=colors[i],
label=label[:12],
alpha=0.5,
s=5
)
mmsb_degree = np.load('figures/mmsb_sparse_degree.npy')
kron_degree = np.load('figures/kron_degree.npy')
ba_degree = np.load('figures/ba_degree.npy')
real_clustering = np.load('figures/real_clustering.npy')
graphrnn_rnn_clustering = np.load('figures/graphrnn_rnn_clustering.npy')
graphrnn_mlp_clustering = np.load('figures/graphrnn_mlp_clustering.npy')
mmsb_clustering = np.load('figures/mmsb_sparse_clustering.npy')
kron_clustering = np.load('figures/kron_clustering.npy')
ba_clustering = np.load('figures/ba_clustering.npy')
plt.switch_backend('agg')
sns.set()
sns.set_style("ticks")
sns.set_context("poster",font_scale=1.4,rc={"lines.linewidth": 3.5})
fig = plt.figure()
plt.ylim(0, 0.1)
plt.xlim(0, 50)
plt.tight_layout()
current_size = fig.get_size_inches()
fig.set_size_inches(current_size[0]*1.5, current_size[1]*1.5)
degree_plot = sns.distplot(real_degree,hist=False,rug=False,norm_hist=True,label='Real')
degree_plot = sns.distplot(ba_degree,hist=False,rug=False,norm_hist=True,label='B-A')
degree_plot = sns.distplot(kron_degree,hist=False,rug=False,norm_hist=True,label='Kronecker')
degree_plot = sns.distplot(mmsb_degree,hist=False,rug=False,norm_hist=True,label='MMSB')
degree_plot = sns.distplot(graphrnn_mlp_degree,hist=False,rug=False,norm_hist=True,label='GraphRNN-S')
degree_plot = sns.distplot(graphrnn_rnn_degree,hist=False,rug=False,norm_hist=True,label='GraphRNN')
degree_plot.set(xlabel='degree', ylabel='probability density')
print("Prob exactly 2: " + str(prob_exactly_2))
print("Prob exactly 1: " + str(prob_exactly_1))
print("Prob never uninterpretable: " + str(prob_exactly_0))
"""attn_perf_overlap_for_model('yahoo')
attn_perf_overlap_for_model('imdb')
attn_perf_overlap_for_model('amazon')
attn_perf_overlap_for_model('yelp')"""
try:
sns.set(font_scale=1.5)
sns.set_style("whitegrid")
except:
pass
def make_2x2_2boxplot_set(list1_of_two_vallists_to_boxplot, list2_of_two_vallists_to_boxplot,
list3_of_two_vallists_to_boxplot, list4_of_two_vallists_to_boxplot, list_of_colorlabels,
list_of_two_color_tuples, labels_for_4_boxplot_sets):
pass
def make_4_4boxplot_set(list1_of_four_vallists_to_boxplot, list2_of_four_vallists_to_boxplot,
list3_of_four_vallists_to_boxplot, list4_of_four_vallists_to_boxplot, list_of_colorlabels,
list_of_four_color_tuples, labels_for_4_boxplot_sets):
pass
def draw_group_boxplot(name_list,data_list1,data_list2, label ='Dice Score',titile=None, fpth=None ):
df = get_df_from_list(name_list,data_list1,data_list2)
df = df[['Group', 'Longitudinal', 'Cross-subject']]
dd = pd.melt(df, id_vars=['Group'], value_vars=['Longitudinal', 'Cross-subject'], var_name='task')
fig, ax = plt.subplots(figsize=(15, 8))
sn=sns.boxplot(x='Group', y='value', data=dd, hue='task', palette='Set2',ax=ax)
#sns.palplot(sns.color_palette("Set2"))
sn.set_xlabel('')
sn.set_ylabel(label)
# plt.xticks(rotation=45)
ax.yaxis.grid(True)
leg=plt.legend(prop={'size': 18},loc=4)
leg.get_frame().set_alpha(0.2)
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(20)
for tick in ax.get_xticklabels():
tick.set_rotation(30)
if fpth is not None:
plt.savefig(fpth,dpi=500, bbox_inches = 'tight')
plt.close('all')
else:
np.linalg.norm(p_hat - dcsbm_P) ** 2
# heatmap(dcsbe.p_mat_, inner_hier_labels=labels)
# heatmap(dcsbm_P, inner_hier_labels=labels)
import seaborn as sns
plt.figure()
sns.scatterplot(
x=latent[:, 0], y=latent[:, 1], hue=dcsbe.vertex_assignments_, linewidth=0
)
#%%
from graspy.embed import LaplacianSpectralEmbed, AdjacencySpectralEmbed
plt.style.use("seaborn-white")
sns.set_palette("Set1")
plt.figure(figsize=(10, 10))
sns.set_context("talk", font_scale=1.5)
sns.scatterplot(x=latent[:, 0], y=latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
ase = AdjacencySpectralEmbed(n_components=2)
lse = LaplacianSpectralEmbed(n_components=2, form="R-DAD", regularizer=1)
ase_latent = ase.fit_transform(graph)
lse_latent = lse.fit_transform(graph)
plt.figure(figsize=(10, 10))
sns.scatterplot(x=ase_latent[:, 0], y=ase_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
plt.figure(figsize=(10, 10))
sns.scatterplot(x=lse_latent[:, 0], y=lse_latent[:, 1], hue=labels, linewidth=0)
plt.axis("square")
# A PSD matrix can be created as follows, though is not used in the test.
# H = H @ H.t()
eigenvalues = A.symeig(H)[0]
spectrum_norm = A.max(eigenvalues)
H /= spectrum_norm
K = 1024
n_vec = 1
eigs = matrix_ops.lanczos_spectrum_approx(H, 100, K, n_vec)
eig_ref = A.symeig(H)[0]
import seaborn as sns
from matplotlib import pyplot as plt
import pandas as pd
plt.figure()
sns.distplot(A.eval(eig_ref), bins=50, norm_hist=True, kde=False)
sns.lineplot(data=pd.DataFrame(A.eval(eigs), index=np.linspace(-1, 1, K)) )
plt.savefig("lanczos_wigner.jpg")
dataset.isna().sum()
dataset = dataset.dropna()
origin = dataset.pop('Origin')
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
dataset.tail()
train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)
sns.pairplot(
train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde")
train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats
train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')
def norm(x):
return (x - train_stats['mean']) / train_stats['std']
from __future__ import print_function
import argparse
import sys
import os
import toolshed as ts
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
from itertools import groupby, cycle
from operator import itemgetter
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
try:
import seaborn as sns
sns.set_context("paper")
sns.set_style("dark", {'axes.linewidth': 1})
except ImportError:
pass
import numpy as np
from cpv._common import bediter, get_col_num, genomic_control
def chr_cmp(a, b):
a, b = a[0], b[0]
a = a.lower().replace("_", ""); b = b.lower().replace("_", "")
achr = a[3:] if a.startswith("chr") else a
bchr = b[3:] if b.startswith("chr") else b
try:
return cmp(int(achr), int(bchr))
except ValueError:
if achr.isdigit() and not bchr.isdigit(): return -1
if bchr.isdigit() and not achr.isdigit(): return 1