Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "sklearn in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'sklearn' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

aucs['bfgs'] = roc_auc_score(A_true,
                                     bfgs_model.W.ravel())

    if sgd_model is not None:
        assert isinstance(sgd_model, DiscreteTimeStandardHawkesModel)
        aucs['sgd'] = roc_auc_score(A_true,
                                     sgd_model.W.ravel())

    if gibbs_samples is not None:
        # Compute ROC based on mean value of W_effective in second half of samples
        Weff_samples = np.array([s.weight_model.W_effective for s in gibbs_samples])
        N_samples    = Weff_samples.shape[0]
        offset       = N_samples // 2
        Weff_mean    = Weff_samples[offset:,:,:].mean(axis=0)

        aucs['gibbs'] = roc_auc_score(A_true, Weff_mean.ravel())

    if gibbs_ss_samples is not None:
        # Compute ROC based on mean value of W_effective in second half of samples
        Weff_samples = np.array([s.weight_model.W_effective for s in gibbs_ss_samples])
        N_samples    = Weff_samples.shape[0]
        offset       = N_samples // 2
        Weff_mean    = Weff_samples[offset:,:,:].mean(axis=0)

        aucs['gibbs_ss'] = roc_auc_score(A_true, Weff_mean.ravel())

    if vb_models is not None:
        # Compute ROC based on E[A] under variational posterior
        aucs['vb'] = roc_auc_score(A_true,
                                   vb_models[-1].weight_model.expected_A().ravel())

    if svi_models is not None:
y = np.concatenate(y)

from sklearn import preprocessing
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.cross_validation import ShuffleSplit

cv = ShuffleSplit(len(y), 10, test_size=0.2)

pipe = True  # use pipeline?

for train_idx, test_idx in cv:
    y_train, y_test = y[train_idx], y[test_idx]

    # define transformer objects
    scaler = preprocessing.StandardScaler()
    concatenator = ConcatenateChannels()
    clf = SVC(C=1, kernel='linear')

    if pipe is not True:

        # Concatenate channels
        concatenator = concatenator.fit(X[train_idx, :, :], y_train)
        X_train = concatenator.transform(X[train_idx, :, :])

        # Scale data across trials
        X_train = scaler.fit_transform(X_train)

        X_test = concatenator.transform(X[test_idx, :, :])
        X_test = scaler.fit_transform(X_test)

        clf = clf.fit(X_train, y_train)
def test_combine_inputs_floats_ints(self):
        data = [[0, 0.0], [0, 0.0], [1, 1.0], [1, 1.0]]
        scaler = StandardScaler()
        scaler.fit(data)
        model = Pipeline([("scaler1", scaler), ("scaler2", scaler)])

        model_onnx = convert_sklearn(
            model,
            "pipeline",
            [
                ("input1", Int64TensorType([None, 1])),
                ("input2", FloatTensorType([None, 1])),
            ],
        )
        self.assertTrue(len(model_onnx.graph.node[-1].output) == 1)
        self.assertTrue(model_onnx is not None)
        data = numpy.array(data)
        data = {
            "input1": data[:, 0].reshape((-1, 1)).astype(numpy.int64),
def test_custom_metric_and_scores_1_estimator(self):

        model = LinearRegression()
        scorer = make_scorer(mean_squared_error)
        scores_1 = cross_val_score(model, X_train, y=y_train,
                                   cv=n_folds, scoring=scorer,
                                   n_jobs=1, verbose=0)
        
        # fit then transform
        estimators = [('lr', LinearRegression())]
        stack = StackingTransformer(estimators, regression=True,
                                    metric=mean_squared_error,
                                    n_folds=n_folds, shuffle=False,
                                    variant='B', random_state=0,
                                    verbose=0)
        stack = stack.fit(X_train, y_train)
        scores_2 = stack.scores_[0].copy()
        
        # mean and std
        mean_1 = np.mean(scores_1)
tr = args.transform[0]
    if tr in transformation_values:
        transform_str = tr
        if args.equalize[0] in true_values:
            transform_str += '_eq'
    else:
        transform_str = "no_transform"
    dfs_str = str(args.dfs[0])

    clf = cfr.fit(X_train, y_train)
    outdir_clf=filename_model_RF_tt.format(resol, transform_str, dfs_str)
    if not os.path.exists(model_directory):
        os.makedirs(model_directory)
    print "Saving classifier...",  outdir_clf
    joblib.dump(clf, outdir_clf) 
        
    clf2 = cfr2.fit(X_train, y_train)
    outdir_clf2=filename_model_SVC_tt.format(resol, transform_str, dfs_str)
    print "Saving classifier...", outdir_clf2
    joblib.dump(clf2, outdir_clf2)
    
    print "RF, SVM: " + str( round(clf.score(X_test, y_test), 4) ) + " " + str( round(clf2.score(X_test, y_test), 4) )
def test_way4_mixin_fit(self):

        X = np.arange(20).reshape(10, 2)
        try:
            tr = wrap_as_onnx_mixin(KMeans(n_clusters=2))
        except KeyError as e:
            assert "SklearnGaussianProcessRegressor" in str(e)
            return
        tr.fit(X)

        onx = tr.to_onnx(X.astype(np.float32))

        dump_data_and_model(
            X.astype(np.float32), tr, onx,
            basename="MixinWay4OnnxMixin2")
    [SVC(kernel='linear', random_state=42, probability=True)],
    [NuSVC(kernel='linear', random_state=42)],
    [NuSVC(kernel='linear', random_state=42, decision_function_shape='ovr')],
])
def test_explain_linear_binary(newsgroups_train_binary, clf):
    assert_binary_linear_classifier_explained(newsgroups_train_binary, clf,
                                              explain_prediction)
for user_id, row in enumerate(ground_truth):
        uid_array = np.empty(no_items, dtype=np.int32)
        uid_array.fill(user_id)
        predictions = model.predict(uid_array, pid_array,
                                    user_features=user_features,
                                    item_features=item_features,
                                    num_threads=4)

        true_pids = row.indices[row.data == 1]

        grnd = np.zeros(no_items, dtype=np.int32)
        grnd[true_pids] = 1

        if len(true_pids):
            scores.append(roc_auc_score(grnd, predictions))

    return scores
logger.info("###################################RUNNING EXPERIMENT NUM %s#########################", str(experiment_number))
    logger.info("Program Arguments:")
    args_dict = vars(args)
    for key, value in args_dict.iteritems() :
        logger.info("%s=%s" % (str(key), str(value)))

    test_suite = Tests(logger, args)
    target_test, Y_pred, cost_list, cost_test_list, learning_rates, rmse = test_suite.run_tests()

    Y_pred_copy = np.copy(Y_pred)
    accuracy_score_Y_pred =  np.rint(Y_pred_copy).astype(int)

    if args.test_type != 'f':
        logger.info('###################################Accuracy Results###############################')
        logger.info('Accuracy: ' + str(accuracy_score(target_test, accuracy_score_Y_pred)))
        logger.info('\n' + str(classification_report(target_test, accuracy_score_Y_pred)))
    else:
        logger.info('###################################Accuracy Results###############################')

        target_test_1d = target_test.ravel()
        Y_pred_1d = Y_pred.ravel()
        distance = 0

        for i in range(len(target_test_1d)):
            distance += abs(Y_pred_1d[i] - target_test_1d[i])

        avg_distance = distance / len(target_test_1d)
        logger.info("Accuracy Score: %s" % (str(avg_distance)))
        logger.info("NOTE: Accuracy Score is avg. distance between expected and predicted y-values")
        logger.info("NOTE: Computed using the following code:")
        logger.info("for i in range(len(target_test_1d)):")
        logger.info("\tdistance += abs(Y_pred_1d[i] - target_test_1d[i])")
def _report_classifier(clf, expected: np.ndarray, predicted: np.ndarray):
    print("Detailed classification report:")

    print("Classification report for classifier %s:\n%s\n"
          % (clf, metrics.classification_report(expected, predicted)))
    cm = metrics.confusion_matrix(expected, predicted)
    cm = cm / cm.sum(axis=1)[:, None] * 100

    #np.set_printoptions(formatter={'float': '{: 2.2f}'.format})
    print(f"Confusion matrix:\n {cm}")

    f1_score = metrics.f1_score(expected, predicted, average='weighted')
    precision = metrics.precision_score(expected, predicted, average='weighted')
    recall = metrics.recall_score(expected, predicted, average='weighted')
    accuracy = metrics.accuracy_score(expected, predicted)
    print(f"f1_score: {f1_score:{2}.{4}}")
    print(f"precision: {precision:{2}.{4}}")
    print(f"recall: {recall:{2}.{4}}")
    print(f"accuracy: {accuracy:{2}.{4}}")

Is your System Free of Underlying Vulnerabilities?
Find Out Now