Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'cloudpickle' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
assert np.isclose(np.linalg.norm(model.vp-new_model.vp), 0)
f0 = .010
dt = model.critical_dt
t0 = 0.0
tn = 350.0
time_range = TimeAxis(start=t0, stop=tn, step=dt)
# Test TimeAxis pickling
pkl_time_range = pickle.dumps(time_range)
new_time_range = pickle.loads(pkl_time_range)
assert np.isclose(np.linalg.norm(time_range.time_values),
np.linalg.norm(new_time_range.time_values))
# Test Class Constant pickling
pkl_origin = pickle.dumps(model.grid.origin)
new_origin = pickle.loads(pkl_origin)
for a, b in zip(model.grid.origin, new_origin):
assert a.compare(b) == 0
# Test Class TimeDimension pickling
time_dim = TimeDimension(name='time', spacing=Constant(name='dt', dtype=np.float32))
pkl_time_dim = pickle.dumps(time_dim)
new_time_dim = pickle.loads(pkl_time_dim)
assert time_dim.spacing._value == new_time_dim.spacing._value
# Test Class SteppingDimension
stepping_dim = SteppingDimension(name='t', parent=time_dim)
pkl_stepping_dim = pickle.dumps(stepping_dim)
new_stepping_dim = pickle.loads(pkl_stepping_dim)
assert stepping_dim.is_Time == new_stepping_dim.is_Time
def tearDownClass(cls):
cloudpickle.loads(cls.r.get('env'))
cloudpickle.loads(cls.r.get('traj'))
cloudpickle.loads(cls.r.get('gpol'))
cloudpickle.loads(cls.r.get('dpol'))
cloudpickle.loads(cls.r.get('mpcpol'))
cloudpickle.loads(cls.r.get('qfunc'))
cloudpickle.loads(cls.r.get('aqpol'))
cloudpickle.loads(cls.r.get('vfunc'))
cloudpickle.loads(cls.r.get('mcpol'))
flow_runner = MagicMock()
monkeypatch.setattr(
"prefect.engine.get_default_flow_runner_class",
MagicMock(return_value=flow_runner),
)
kube_cluster = MagicMock()
monkeypatch.setattr("dask_kubernetes.KubeCluster", kube_cluster)
with tempfile.TemporaryDirectory() as directory:
with open(os.path.join(directory, "flow_env.prefect"), "w+") as env:
flow = prefect.Flow("test")
flow_path = os.path.join(directory, "flow_env.prefect")
with open(flow_path, "wb") as f:
cloudpickle.dump(flow, f)
with set_temporary_config({"cloud.auth_token": "test"}):
with prefect.context(
flow_file_path=os.path.join(directory, "flow_env.prefect")
):
environment.run_flow()
assert flow_runner.call_args[1]["flow"].name == "test"
assert start_func.called
assert exit_func.called
def test_pickle_english(EN):
file_ = io.BytesIO()
cloudpickle.dump(EN, file_)
file_.seek(0)
loaded = pickle.load(file_)
def load_bytes(fname):
import cloudpickle
with open(fname, "rb") as f:
obj = cloudpickle.load(f)
return obj(1, 2, 3)
def _conda_env():
# NB: We need mlflow as a dependency in the environment.
return _mlflow_conda_env(
additional_conda_deps=None,
install_mlflow=False,
additional_pip_deps=[
"-e " + os.path.dirname(mlflow.__path__[0]),
"cloudpickle=={}".format(cloudpickle.__version__),
"scikit-learn=={}".format(sklearn.__version__)
],
additional_conda_channels=None)
self.on_start()
try:
from prefect.engine import (
get_default_flow_runner_class,
get_default_executor_class,
)
# Load serialized flow from file and run it with the executor
with open(
prefect.context.get(
"flow_file_path", "/root/.prefect/flow_env.prefect"
),
"rb",
) as f:
flow = cloudpickle.load(f)
runner_cls = get_default_flow_runner_class()
executor_cls = get_default_executor_class()()
runner_cls(flow=flow).run(executor=executor_cls)
except Exception as exc:
self.logger.exception(
"Unexpected error raised during flow run: {}".format(exc)
)
raise exc
finally:
# Call on_exit callback if specified
if self.on_exit:
self.on_exit()
def driver():
warnings.filterwarnings("ignore")
# Dependencies for deploying the model
pytorch_index = "https://download.pytorch.org/whl/"
pytorch_version = "cpu/torch-1.1.0-cp36-cp36m-linux_x86_64.whl"
deps = [
"cloudpickle=={}".format(cloudpickle.__version__),
pytorch_index + pytorch_version,
"torchvision=={}".format(torchvision.__version__),
"Pillow=={}".format("6.0.0")
]
with mlflow.start_run() as run:
model = Net().to(device)
optimizer = optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
# Log model to run history using MLflow
if args.save_model:
model_env = _mlflow_conda_env(additional_pip_deps=deps)
def _serialize_function(function):
# Note; In Py3 cloudpickle and base64 handle bytes objects only, so we need to
# decode it into a string to be able to json dump it again later.
cp_version = getattr(cloudpickle, "__version__", None)
if cp_version is None or cp_version != "0.4.0":
warn(
(
"You must use version 0.4.0 of cloudpickle for compatibility with the Tasks client. {} found."
).format(cp_version)
)
encoded_bytes = base64.b64encode(cloudpickle.dumps(function))
return encoded_bytes.decode("ascii")
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)