Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "altair in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'altair' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

height=600,
    width=800,
):
    """Generate many scatterplots.

    Based on several columns, pairwise.
    """
    opt_args = choose_kwargs(locals(), ["color", "tooltip"])

    assert group_by is None, "Long format not supported yet"
    return (
        alt.Chart(data, height=height // len(columns), width=width // len(columns))
        .mark_point(size=1 / len(columns), opacity=opacity)
        .encode(
            alt.X(alt.repeat("column"), type="quantitative"),
            alt.Y(alt.repeat("row"), type="quantitative"),
            **opt_args
        )
        .repeat(row=columns, column=columns)
    )
def visualize(display_df):
        viridis = ['#440154', '#472c7a', '#3b518b', '#2c718e', '#21908d', '#27ad81', '#5cc863', '#aadc32', '#fde725']
        import altair as alt
        color_scale = alt.Scale(
            domain=(display_df.dropna().trending.min(),
                    0,
                    display_df.dropna().trending.max()),
            range=[viridis[0], viridis[len(viridis) // 2], viridis[-1]]
        )

        return alt.Chart(display_df).mark_circle().encode(
            alt.X('variable'),
            alt.Y('term'),
            size='frequency',
            color=alt.Color('trending:Q', scale=color_scale),
        )
rng = np.random.RandomState(1)
x = rng.rand(40) ** 2
y = 10 - 1. / (x + 0.1) + rng.randn(40)
df = pd.DataFrame({'x': x, 'y': y})

# Define the degree of the polynomial fit
degree_list = [1, 3, 5]

# Build a dataframe with the fitted data
poly_data = pd.DataFrame({'xfit': np.linspace(df['x'].min(), df['x'].max(), 500)})
for degree in degree_list:
    poly_data[str(degree)] = np.poly1d(np.polyfit(df['x'], df['y'], degree))(poly_data['xfit'])

# Plot the data points on an interactive axis
points = alt.Chart(df).mark_circle(color='black').encode(
    x=alt.X('x', title='x'),
    y=alt.Y('y', title='y')
).interactive()

# Plot the best fit polynomials
polynomial_fit = alt.Chart(poly_data).transform_fold(
    ['1', '3', '5'],
    as_=['degree', 'yfit']
).mark_line().encode(
    x='xfit:Q',
    y='yfit:Q',
    color='degree:N'
)

points + polynomial_fit
class AggregateOp(VegaLiteSchema):
    """AggregateOp schema wrapper

    enum('values', 'count', 'valid', 'missing', 'distinct', 'sum', 'mean', 'average',
    'variance', 'variancep', 'stdev', 'stdevp', 'median', 'q1', 'q3', 'modeskew', 'min', 'max',
    'argmin', 'argmax')
    """
    _schema = {'$ref': '#/definitions/AggregateOp'}
    _rootschema = Root._schema

    def __init__(self, *args):
        super(AggregateOp, self).__init__(*args)


class Type(VegaLiteSchema):
    """Type schema wrapper

    enum('quantitative', 'ordinal', 'temporal', 'nominal')
    """
    _schema = {'$ref': '#/definitions/Type'}
    _rootschema = Root._schema

    def __init__(self, *args):
        super(Type, self).__init__(*args)


class TimeUnit(VegaLiteSchema):
    """TimeUnit schema wrapper

    enum('year', 'month', 'day', 'date', 'hours', 'minutes', 'seconds', 'milliseconds',
    'yearmonth', 'yearmonthdate', 'yearmonthdatehours', 'yearmonthdatehoursminutes',
def plot(self, show=True):
        """ Assumes nothing in self.settings is None (i.e., there are no keys
        in settings such that settings[key] == None"""

        kwargs = {e['encoding']: _get_plot_command(e)
                  for e in self.settings['encodings']}

        mark_opts = {k: v for k, v in self.settings['mark'].items()}
        mark = mark_opts.pop('mark')
        Chart_mark = getattr(altair.Chart(self.df), mark)
        self.chart = Chart_mark(**mark_opts).encode(**kwargs)
        if show and self.show:
            clear_output()
            display(self.chart)
# category: scatter plots

import numpy as np
import pandas as pd
import altair as alt

# Generate some random data
rng = np.random.RandomState(1)
x = rng.rand(40) ** 2
y = 10 - 1.0 / (x + 0.1) + rng.randn(40)
source = pd.DataFrame({"x": x, "y": y})

# Define the degree of the polynomial fits
degree_list = [1, 3, 5]

base = alt.Chart(source).mark_circle(color="black").encode(
        alt.X("x"), alt.Y("y")
)

polynomial_fit = [
    base.transform_regression(
        "x", "y", method="poly", order=order, as_=["x", str(order)]
    )
    .mark_line()
    .transform_fold([str(order)], as_=["degree", "y"])
    .encode(alt.Color("degree:N"))
    for order in degree_list
]

alt.layer(base, *polynomial_fit)
chart_pixel_width = (len(values) / 60.0) * 1000
            if chart_pixel_width < 200:
                chart_pixel_width = 200
            chart_container_col_width = round((len(values) / 60.0) * 12)
            if chart_container_col_width < 4:
                chart_container_col_width = 4
            elif chart_container_col_width > 8:
                chart_container_col_width = 12
            elif chart_container_col_width > 4:
                chart_container_col_width = 8

        mark_bar_args = {}
        if len(values) == 1:
            mark_bar_args["size"] = 20

        bars = alt.Chart(df).mark_bar(**mark_bar_args).encode(
            y='count:Q',
            x="value:O",
            tooltip=["value", "count"]
        ).properties(height=400, width=chart_pixel_width, autosize="fit")

        chart = bars.to_json()

        new_block = RenderedComponentContent(**{
            "content_block_type": "graph",
            "header":
                {
                    "template": "Value Counts",
                    "tooltip": {
                        "content": "expect_column_distinct_values_to_be_in_set"
                    }
                },
def stripplot(
    data=None, columns=None, group_by=None, color=None, opacity=1, height=600, width=800
):
    """Generate a stripplot."""
    data, key, value = multivariate_preprocess(data, columns, group_by)
    enc_args = dict()
    if color is not None:
        enc_args["color"] = color
    return (
        alt.Chart(data, height=height, width=width)
        .mark_tick(opacity=opacity, thickness=2)
        .encode(x=key + ":N", y=value, **enc_args)
    )
"""
Atmospheric CO2 Concentration
-----------------------------
This example is a fully developed line chart that uses a window transformation.
It was inspired by `Gregor Aisch's work at datawrapper
`_.
"""
# category: case studies
import altair as alt
from vega_datasets import data

source = data.co2_concentration.url

base = alt.Chart(
    source,
    title="Carbon Dioxide in the Atmosphere"
).transform_calculate(
    year="year(datum.Date)"
).transform_calculate(
    decade="floor(datum.year / 10)"
).transform_calculate(
    scaled_date="(datum.year % 10) + (month(datum.Date)/12)"
).transform_window(
    first_date='first_value(scaled_date)',
    last_date='last_value(scaled_date)',
    sort=[{"field": "scaled_date", "order": "ascending"}],
    groupby=['decade'],
    frame=[None, None]
).transform_calculate(
  end="datum.first_date === datum.scaled_date ? 'first' : datum.last_date === datum.scaled_date ? 'last' : null"
def _placeholder_for_empty_chart(text_to_display,
                                 width=100,
                                 height=100,
                                 title=''):
  chart = alt.Chart({'values': [{'placeholder': text_to_display}]}) \
      .mark_text(size=14).encode(text='placeholder:N') \
      .properties(width=width, height=height, title=title)
  return chart

Is your System Free of Underlying Vulnerabilities?
Find Out Now