Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "xgboost in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'xgboost' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

# step 2: Select Feature
data = extract_feature_and_label(data, feature_name_list=conf['feature_name'], label_name_list=conf['label_name'])

# step 3: Preprocess
train, test = divide_train_and_test(data, conf['training_set_proportion'])
train_x, train_y = data_transform_for_xgboost(train)
test_x, test_y = data_transform_for_xgboost(test)
train_y = sign(train_y)
test_y = sign(test_y)
indices = find_all_indices(train_y, 1)
indices.extend(find_all_indices(train_y, -1))
train_x = np.array(train_x)[indices]
train_y = np.array(train_y)[indices]

dtrain = xgb.DMatrix(train_x, train_y)

param = {
    'booster': 'gbtree',
    'silent': True,
    'eta': 0.01,
    'max_depth': 5,
    'gamma': 0.1,
    'objective': 'multi:softmax',
    'num_class': 3,
    'seed': 1000,
    'scale_pos_weight': 1
}

clf = xgb.XGBClassifier(**param)
if conf['use_previous_model'] is False:
    clf.fit(train_x, train_y)
def test():
    data = np.random.rand(5,10) # 5 entities, each contains 10 features
    label = np.random.randint(2, size=5) # binary target
    dtrain = xgb.DMatrix( data, label=label)
    dtest = xgb.DMatrix(test)
    param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
    evallist  = [(dtest,'eval'), (dtrain,'train')]
    num_round = 10
    bst = xgb.train( param, dtrain, num_round, evallist)
X_train, y_train = X[:tr_size, :], y[:tr_size]
        X_test, y_test = X[tr_size:, :], y[tr_size:]

        # First with cpu_predictor
        params = {'tree_method': 'gpu_hist',
                  'predictor': 'cpu_predictor',
                  'n_jobs': -1,
                  'seed': 123}
        m = xgb.XGBRegressor(**params).fit(X_train, y_train)
        cpu_train_score = m.score(X_train, y_train)
        cpu_test_score = m.score(X_test, y_test)

        # Now with gpu_predictor
        params['predictor'] = 'gpu_predictor'

        m = xgb.XGBRegressor(**params).fit(X_train, y_train)
        gpu_train_score = m.score(X_train, y_train)
        gpu_test_score = m.score(X_test, y_test)

        assert np.allclose(cpu_train_score, gpu_train_score)
        assert np.allclose(cpu_test_score, gpu_test_score)
def test_xgboost_direct():
    try:
        import xgboost
    except Exception as e:
        print("Skipping test_xgboost_direct!")
        return
    import shap

    N = 100
    M = 4
    X = np.random.randn(N,M)
    y = np.random.randn(N)  

    model = xgboost.XGBRegressor()
    model.fit(X, y)

    explainer = shap.TreeExplainer(model)
    shap_values = explainer.shap_values(X)

    assert np.allclose(shap_values[0,:], _brute_force_tree_shap(explainer.model, X[0,:]))
def test_xgboost_classifier(output_margin):
    import xgboost as xgb
    df = pd.read_csv("./open_data/creditcard.csv")
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')

    gbm = xgb.sklearn.XGBClassifier()

    gbm.fit(X, y)

    gbm.predict(X, output_margin=output_margin)

    gbm.predict_proba(X, output_margin=output_margin)
custom_input1,
        custom_input2,
        model,
        custom_output1,
    ):

    with train as reader:
        train_df = reader.read(concat=True)
        dtrain_x = xgb.DMatrix(train_df[:-1])
        dtrain_y = xgb.DMatrix(train_df[-1])
    with validation as reader:
        validation_df = reader.read(concat=True)
        dvalidation_x = xgb.DMatrix(validation_df[:-1])
        dvalidation_y = xgb.DMatrix(validation_df[-1])

    my_model = xgb.XGBModel(**static_hyperparameters)

    my_model.fit(dtrain_x,
                 dtrain_y,
                 eval_set=[(dvalidation_x, dvalidation_y)],
                 eval_metric=sample_eval_function)

    model.set(my_model)
    custom_output1.set(my_model.evals_result())
def test_xgboost_ranking():
    try:
        import xgboost
    except:
        print("Skipping test_xgboost_ranking!")
        return
    import shap

    # train lightgbm ranker model
    x_train, y_train, x_test, y_test, q_train, q_test = shap.datasets.rank()
    params = {'objective': 'rank:pairwise', 'learning_rate': 0.1,
              'gamma': 1.0, 'min_child_weight': 0.1,
              'max_depth': 4, 'n_estimators': 4}
    model = xgboost.sklearn.XGBRanker(**params)
    model.fit(x_train, y_train, q_train.astype(int),
              eval_set=[(x_test, y_test)], eval_group=[q_test.astype(int)])
    _validate_shap_values(model, x_test)
def test_xgboost_regression(output_margin):
    import xgboost as xgb
    df = pd.read_csv("./open_data/creditcard.csv")
    X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C')
    y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C')

    gbm = xgb.sklearn.XGBRegressor()

    gbm.fit(X, y)

    gbm.predict(X, output_margin=output_margin)
def test_xgboost_ranking():
    try:
        import xgboost
    except:
        print("Skipping test_xgboost_ranking!")
        return
    import shap

    # train lightgbm ranker model
    x_train, y_train, x_test, y_test, q_train, q_test = shap.datasets.rank()
    params = {'objective': 'rank:pairwise', 'learning_rate': 0.1,
              'gamma': 1.0, 'min_child_weight': 0.1,
              'max_depth': 4, 'n_estimators': 4}
    model = xgboost.sklearn.XGBRanker(**params)
    model.fit(x_train, y_train, q_train.astype(int),
              eval_set=[(x_test, y_test)], eval_group=[q_test.astype(int)])
    _validate_shap_values(model, x_test)
def run_test(name, params_fun):
    """Runs a distributed GPU test."""
    # Always call this before using distributed module
    xgb.rabit.init()
    rank = xgb.rabit.get_rank()
    world = xgb.rabit.get_world_size()

    # Load file, file will be automatically sharded in distributed mode.
    dtrain = xgb.DMatrix('../../demo/data/agaricus.txt.train')
    dtest = xgb.DMatrix('../../demo/data/agaricus.txt.test')

    params, n_rounds = params_fun(rank)

    # Specify validations set to watch performance
    watchlist = [(dtest, 'eval'), (dtrain, 'train')]

    # Run training, all the features in training API is available.
    # Currently, this script only support calling train once for fault recovery purpose.
    bst = xgb.train(params, dtrain, n_rounds, watchlist, early_stopping_rounds=2)

    # Have each worker save its model
    model_name = "test.model.%s.%d" % (name, rank)

Is your System Free of Underlying Vulnerabilities?
Find Out Now