Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "pandas in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'pandas' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

try:
    from colorama import Fore, Style, init
except ImportError:
    pass
from ethereum import tester as t
from pyconsensus import Oracle

ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                    os.pardir, os.pardir, "consensus")

np.set_printoptions(linewidth=225,
                    suppress=True,
                    formatter={"float": "{: 0.6f}".format})

pd.set_option("display.max_rows", 25)
pd.set_option("display.width", 1000)
pd.set_option('display.float_format', lambda x: '%.8f' % x)

# max_iterations: number of blocks required to complete PCA
verbose = False
max_iterations = 5
tolerance = 0.05
variance_threshold = 0.85
max_components = 5
init()

YES = 2.0
NO = 1.0
BAD = 1.5
NA = 0.0

def BR(string): # bright red
10.0, 5.0, 5.0, 5.0, 5.0, 0.0, 5.0, 5.0, 5.0]],
                            index=[0, 1, 2])
    test_front_end_option = SimilarityFrontEndOption(
        comp_file_id=2, sort_ascending=True, sort_column=0)
    test_id_table = {0: "F1.txt", 1: "F2.txt", 2: "F3.txt"}
    similarity_model = SimilarityModel(
        test_options=SimilarityTestOption(
            doc_term_matrix=test_dtm,
            front_end_option=test_front_end_option,
            document_label_map=test_id_table
        )
    )

    pd.testing.assert_frame_equal(
        similarity_model._get_similarity_query(),
        pd.DataFrame(index=["Documents", "Cosine Similarity"],
                     data=[["F1.txt", "F2.txt"], [1., 1.]]).transpose()
    )
"IOC", "HINDPETRO", "HEROMOTOCO",
            "M&M", "ULTRACEMCO", "BAJAJFINSV",
            "TATASTEEL", "HDFC", "BHARTIARTL",
            "EICHERMOT", "JSWSTEEL", "ASIANPAINT",
            "BAJAJ-AUTO", "AXISBANK", "YESBANK",
            "IBULHSGFIN", "ITC", "LT",
            "UPL", "KOTAKBANK", "HDFCBANK",
            "HINDUNILVR", "ONGC", "TITAN",
            "RELIANCE", "GAIL", "POWERGRID",
            "NTPC", "COALINDIA", "ICICIBANK",
            "SUNPHARMA", "INFRATEL", "GRASIM",
            "SBIN", "HCLTECH", "INFY", "TCS",
            "BAJFINANCE", "ZEEL", "CIPLA", "DRREDDY",
            "WIPRO", "TECHM"]

        self.all_stock_data = pd.DataFrame(columns=['Stock', 'Volume', 'High', 'Low'])

        i = 0
        for stock in self.nifty_50_stocks:
            stock_data = fetch_stock_data(stock, 1, '1d')
            self.all_stock_data.loc[i] = [stock, stock_data['Volume'].mean(), stock_data['High'].mean(),
                                          stock_data['Low'].mean()]
            i = i + 1

        print('Fetched data for all nifty 50 stocks')
def test_nonvectorized_math_apply_on_large_dataframe_broadcast(self):
        LOG.info("test_nonvectorized_math_apply_on_large_dataframe_broadcast")
        df = pd.DataFrame({"x": np.random.normal(size=1_000_000), "y": np.random.uniform(size=1_000_000)})

        tqdm.pandas(desc="Pandas Nonvec math apply + broadcast ~ DF")
        start_pd = time.time()
        pd_val = df.progress_apply(math_agg_foo, axis=1, result_type="broadcast")
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = df.swifter.progress_bar(desc="Nonvec math apply + broadcast ~ DF").apply(
            math_agg_foo, axis=1, result_type="broadcast"
        )
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
import pandas as pd
import numpy as np
import pyaf.ForecastEngine as autof
import datetime

#get_ipython().magic('matplotlib inline')

trainfile = "https://raw.githubusercontent.com/antoinecarme/TimeSeriesData/master/HeartRateTimeSeries/hr.207"
df = pd.read_csv(trainfile, sep=r',', engine='python', skiprows=0);
df.columns = ['HeartRate']
df['Date'] = range(df.shape[0]);
print(df.head());

lDateVar = 'Date'
lSignalVar = 'HeartRate'

lEngine = autof.cForecastEngine()
lEngine

H = 10;

#lEngine.mOptions.enable_slow_mode();
lEngine.mOptions.mDebugPerformance = True;
lEngine.train(df , lDateVar , lSignalVar, H);
lEngine.getModelInfo();
def get_snapshot(data,
                 file_name,
                 evaluation_point_loc):
    """Main function wrapper to assemble snapshot dataframes"""

    # Start by getting the 48-hour window ± 24hrs around the evaluation point
    evaluation_index = data.index[data.id == evaluation_point_loc]

    data["rounded_local_time"] = \
        pd.to_datetime(data["est.localTime"],
                       utc=True).dt.ceil(freq="5min")

    evaluation_time = \
        pd.to_datetime(data.loc[evaluation_index,
                                'rounded_local_time'].values[0],
                       utc=True)

    df_misc = get_time_to_calculate_at(evaluation_time)

    start_time = evaluation_time - datetime.timedelta(days=1)
    end_time = evaluation_time + datetime.timedelta(days=1)

    snapshot_df = data[(data['rounded_local_time'] >= start_time) &
                       (data['rounded_local_time'] <= end_time)]

    # Get pumpSettings list of active schedules
    active_schedule = get_active_schedule(data,
                                          snapshot_df,
                                          file_name,
                                          evaluation_point_loc,
def test_caltrack_sufficiency_criteria_fail_no_gap_and_not_enough_days():
    data_quality = pd.DataFrame(
        {
            "meter_value": [1, 1],
            "temperature_not_null": [1, 5],
            "temperature_null": [0, 5],
            "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"),
        }
    ).set_index("start")
    requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC")
    requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC")
    data_sufficiency = caltrack_sufficiency_criteria(
        data_quality,
        requested_start,
        requested_end,
        num_days=3,
        min_fraction_daily_coverage=0.9,
        min_fraction_hourly_temperature_coverage_per_period=0.9,
    )
    assert data_sufficiency.status == "FAIL"
    assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria")
    assert len(data_sufficiency.warnings) == 4

    warning0 = data_sufficiency.warnings[0]
    assert warning0.qualified_name == (
        "eemeter.caltrack_sufficiency_criteria.incorrect_number_of_total_days"
df.index.name = 'date'
    chunkstore_lib.write('data', df, audit={'user': 'test_user'})
    df = DataFrame(data={'data': np.random.randint(0, 100, size=10)},
                   index=pd.date_range('2016-01-01', '2016-01-10'))
    df.index.name = 'date'
    chunkstore_lib.write('data', df, audit={'user': 'other_user'})

    assert(len(chunkstore_lib.read_audit_log()) == 2)
    assert(len(chunkstore_lib.read_audit_log(symbol='data')) == 2)
    assert(len(chunkstore_lib.read_audit_log(symbol='none')) == 0)

    chunkstore_lib.append('data', df, audit={'user': 'test_user'})
    assert(chunkstore_lib.read_audit_log()[-1]['appended_rows'] == 10)

    df = DataFrame(data={'data': np.random.randint(0, 100, size=5)},
                   index=pd.date_range('2017-01-01', '2017-01-5'))
    df.index.name = 'date'
    chunkstore_lib.update('data', df, audit={'user': 'other_user'})
    assert(chunkstore_lib.read_audit_log()[-1]['new_chunks'] == 5)

    chunkstore_lib.rename('data', 'data_new', audit={'user': 'temp_user'})
    assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol rename')

    chunkstore_lib.delete('data_new', chunk_range=DateRange('2016-01-01', '2016-01-02'), audit={'user': 'test_user'})
    chunkstore_lib.delete('data_new', audit={'user': 'test_user'})
    assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol delete')
    assert(chunkstore_lib.read_audit_log()[-2]['action'] == 'range delete')
def test_strategybase_tree_allocate_long_short():
    c1 = SecurityBase('c1')
    c2 = SecurityBase('c2')
    s = StrategyBase('p', [c1, c2])

    c1 = s['c1']
    c2 = s['c2']

    dts = pd.date_range('2010-01-01', periods=3)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
    data['c1'][dts[1]] = 105
    data['c2'][dts[1]] = 95

    s.setup(data)

    i = 0
    s.update(dts[i], data.ix[dts[i]])

    s.adjust(1000)
    c1.allocate(500)

    assert c1.position == 5
    assert c1.value == 500
    assert c1.weight == 500.0 / 1000
    assert s.capital == 1000 - 500
def test_select_has_data_preselected():
    algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3))

    s = bt.Strategy('s')

    dts = pd.date_range('2010-01-01', periods=3)
    data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
    data['c1'].ix[dts[0]] = np.nan
    data['c1'].ix[dts[1]] = np.nan

    s.setup(data)
    s.update(dts[2])
    s.temp['selected'] = ['c1']

    assert algo(s)
    selected = s.temp['selected']
    assert len(selected) == 0

Is your System Free of Underlying Vulnerabilities?
Find Out Now