Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'termcolor' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
tests.append('GaussianWithUnknownMeanMarsagliaTestCase')
# tests.append('HiddenMarkovModelTestCase')
# tests.append('BranchingTestCase')
tests.append('MiniCaptchaTestCase')
time_start = time.time()
success = unittest.main(defaultTest=tests, verbosity=2, exit=False).result.wasSuccessful()
print('\nDuration : {}'.format(util.days_hours_mins_secs_str(time.time() - time_start)))
print('Models run : {}'.format(' '.join(tests)))
print('\nTotal inference performance:\n')
print(colored(' Samples KL divergence Duration (s) ', 'yellow', attrs=['bold']))
print(colored('Importance sampling : ', 'yellow', attrs=['bold']), end='')
print(colored('{:+.6e} {:+.6e} {:+.6e}'.format(importance_sampling_samples, importance_sampling_kl_divergence, importance_sampling_duration), 'white', attrs=['bold']))
print(colored('Importance sampling w/ inference net. (FF) : ', 'yellow', attrs=['bold']), end='')
print(colored('{:+.6e} {:+.6e} {:+.6e}'.format(importance_sampling_with_inference_network_ff_samples, importance_sampling_with_inference_network_ff_kl_divergence, importance_sampling_with_inference_network_ff_duration), 'white', attrs=['bold']))
print(colored('Importance sampling w/ inference net. (LSTM): ', 'yellow', attrs=['bold']), end='')
print(colored('{:+.6e} {:+.6e} {:+.6e}'.format(importance_sampling_with_inference_network_lstm_samples, importance_sampling_with_inference_network_lstm_kl_divergence, importance_sampling_with_inference_network_lstm_duration), 'white', attrs=['bold']))
print(colored('Lightweight Metropolis Hastings : ', 'yellow', attrs=['bold']), end='')
print(colored('{:+.6e} {:+.6e} {:+.6e}'.format(lightweight_metropolis_hastings_samples, lightweight_metropolis_hastings_kl_divergence, lightweight_metropolis_hastings_duration), 'white', attrs=['bold']))
print(colored('Random-walk Metropolis Hastings : ', 'yellow', attrs=['bold']), end='')
print(colored('{:+.6e} {:+.6e} {:+.6e}\n'.format(random_walk_metropolis_hastings_samples, random_walk_metropolis_hastings_kl_divergence, random_walk_metropolis_hastings_duration), 'white', attrs=['bold']))
sys.exit(0 if success else 1)
t_cur_history += [K_eval(model.optimizer.t_cur, K)]
eta_history += [K_eval(model.optimizer.eta_t, K)]
model.train_on_batch(X[batch_num], Y[batch_num])
# if batch_num == (num_batches - 2): Manual Option
# K.set_value(model.optimizer.t_cur, -1)
assert _valid_cosine_annealing(eta_history, total_iterations, num_epochs)
assert model.optimizer.get_config() # ensure value evaluation won't error
_test_save_load(model, X, optimizer_name, optimizer)
# cleanup
del model, optimizer
reset_seeds(reset_graph_with_backend=K)
cprint("\n<< {} MAIN TEST PASSED >>\n".format(optimizer_name), 'green')
cprint("\n<< ALL MAIN TESTS PASSED >>\n", 'green')
def test_text_spinner_color(self):
"""Test basic spinner with available colors color (both spinner and text)
"""
for color, color_int in COLORS.items():
self._stream_file = os.path.join(self.TEST_FOLDER, 'test.txt')
self._stream = io.open(self._stream_file, 'w+')
spinner = Halo(
text='foo',
text_color=color,
color=color,
spinner='dots',
stream=self._stream
)
spinner.start()
time.sleep(1)
spinner.stop()
output = self._get_test_output()['colors']
def test_text_spinner_color(self):
"""Test basic spinner with available colors color (both spinner and text)
"""
for color, color_int in COLORS.items():
spinner = HaloNotebook(text='foo', text_color=color, color=color, spinner='dots')
spinner.start()
time.sleep(1)
output = self._get_test_output(spinner)['colors']
spinner.stop()
# check if spinner colors match
self.assertEqual(color_int, int(output[0][0]))
self.assertEqual(color_int, int(output[1][0]))
self.assertEqual(color_int, int(output[2][0]))
# check if text colors match
self.assertEqual(color_int, int(output[0][1]))
self.assertEqual(color_int, int(output[1][1]))
self.assertEqual(color_int, int(output[2][1]))
def test_spinner_color(self):
"""Test ANSI escape characters are present
"""
for color, color_int in COLORS.items():
self._stream = io.open(self._stream_file, 'w+') # reset stream
spinner = Halo(color=color, stream=self._stream)
spinner.start()
spinner.stop()
output = self._get_test_output(no_ansi=False)
output_merged = [arr for c in output['colors'] for arr in c]
self.assertEquals(str(color_int) in output_merged, True)
def setUp(self):
# mock out any red error message printing
flexmock(termcolor)
termcolor.should_receive('cprint').with_args(str, 'red')
import re
import subprocess
from termcolor import colored
from subprocess import Popen, call, PIPE
import argparse
import csv
os.environ['LD_LIBRARY_PATH'] = '/home/klee/klee_build/klee/lib/:$LD_LIBRARY_PAT'
lib_path = '/home/klee/klee_build/klee/lib/'
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--expected", type=int, help="Expected amount of results")
parser.add_argument("-p", "--program", type=str, help="Binary program")
args = parser.parse_args()
print(colored('[+] Compiling ...', 'green'))
cmd = 'clang -Iinclude -L ' + lib_path + ' -Lbuild -o klee/a.out klee/a.c -lkleeRuntest -lpthread -lutils -lcrypto -lm'
p = Popen(cmd.split(' '))
rt_value = p.wait()
if rt_value != 0:
exit(3)
pattern = re.compile(r"data:(.*)\n")
tests = []
running_res = set()
for file in sorted(os.listdir(os.path.join('klee', 'klee-last'))):
if file.endswith('.ktest'):
cmd = 'KTEST_FILE=klee/klee-last/%s' % file
res = os.system(cmd + ' klee/a.out') >> 8
running_res.add(res)
p = subprocess.Popen(str.split("ktest-tool --write-ints klee/klee-last/%s" % file, ' '), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
break
print(' =>',(num+1),value[:-1])
print()
mn = int(input(' => Select CB Online All Models => '))
print()
nr_lines = sum(1 for line in open(config.get('files', 'online_all_model_list')))
if mn > nr_lines:
print(colored(' => Too big number <=', 'yellow', 'on_red'))
print()
print(colored(' => END <=', 'yellow','on_blue'))
sys.exit()
break
except ValueError:
print(colored('\n => Input must be a number <=\n', 'yellow', 'on_red'))
model = open(config.get('files', 'online_all_model_list'), 'r').readlines()[mn-1][:-1]
print ((colored(' => Selected CB Online All Model => {} <=', 'yellow', 'on_blue')).format(model))
print()
if oa == 'OA1000':
while True:
try:
modellist = open(config.get('files', 'online_all_model_list'),'r')
for (num, value) in enumerate(modellist):
if num in range (1000, 5000):
break
print(' =>',(num+1),value[:-1])
print()
mn = int(input(' => Select CB Online All Model => '))
print()
nr_lines = sum(1 for line in open(config.get('files', 'online_all_model_list')))
if mn > nr_lines:
print(colored(' => Too big number <=', 'yellow', 'on_red'))
sys.exit()
else:
print(colored(' => Model is PVT/HIDDEN or AWAY <=', 'yellow','on_red'))
print
print(colored(' => END <=', 'yellow','on_blue'))
sys.exit()
else:
print(colored(' => Model is OFFLINE <=', 'yellow','on_red'))
print
print(colored(' => END <=', 'yellow','on_blue'))
sys.exit()
else:
print(colored(' => Page Not Found <=', 'yellow','on_red'))
print
print(colored(' => END <=', 'yellow','on_blue'))
sys.exit()
def PRINT_HEADER():
init()
print(colored("===========================================================================================",
'cyan', attrs=['bold']))
print(colored('COM_DLC_Checker', 'cyan', attrs=['bold']) + " | " + colored(
' Github.com/Tankerch/COM3D2_DLC_Checker', 'cyan', attrs=['bold']))
print(colored("===========================================================================================",
'cyan', attrs=['bold']))
print("Checking internet connection : ")