Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'scipy' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
def save_visualization(X, nh_nw=(batch_size,2+frames), save_path='../results/%s/sample.jpg'%(sys.argv[4])):
X = morph(X)
print(X.shape)
h,w = X.shape[1], X.shape[2]
img = np.zeros((h * nh_nw[0], w * nh_nw[1], 3))
for n,x in enumerate(X):
j = n // nh_nw[1]
i = n % nh_nw[1]
img[j*h:j*h+h, i*w:i*w+w, :] = x[:,:,:3]
np.save("%s.%s"%(save_path.split(".")[0],".npy"), img)
scipy.misc.imsave(save_path, img)
# Check for constant, if none add one, see Greene 2003, pg. 222
# if constant == False:
# X = np.hstack((np.ones((n,1)),X))
# Check for multicollinearity in the X matrix
ci = condition_index(reg)
if ci > 30:
white_result = "Not computed due to multicollinearity."
return white_result
# Compute cross-products and squares of the regression variables
if type(X).__name__ == 'ndarray':
A = np.zeros((n, (k * (k + 1)) // 2))
elif type(X).__name__ == 'csc_matrix' or type(X).__name__ == 'csr_matrix':
# this is probably inefficient
A = SP.lil_matrix((n, (k * (k + 1)) // 2))
else:
raise Exception("unknown X type, %s" % type(X).__name__)
counter = 0
for i in range(k):
for j in range(i, k):
v = spmultiply(X[:, i], X[:, j], False)
A[:, counter] = v
counter += 1
# Append the original variables
A = sphstack(X, A) # note: this also converts a LIL to CSR
n, k = A.shape
# Check to identify any duplicate or constant columns in A
omitcolumn = []
for i in range(k):
def log_image(np_img, np_confidences, np_boxes, np_global_step,
pred_or_true):
merged = train_utils.add_rectangles(hyp, np_img, np_confidences,
np_boxes,
use_stitching=True,
rnn_len=hyp['rnn_len'])[0]
num_images = 10
filename = '%s_%s.jpg' % \
((np_global_step // hyp['logging']['write_iter'])
% num_images, pred_or_true)
img_path = os.path.join(hyp['dirs']['output_dir'], filename)
scp.misc.imsave(img_path, merged)
return merged
for rp in range(len(self.estimates.ind_new)*2):
out.write(vid_frame)
cv2.imshow('frame', vid_frame)
for rp in range(len(self.estimates.ind_new)*2):
cv2.imshow('frame', vid_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
t += 1
t_online.append(time() - t_frame_start)
self.Ab_epoch.append(self.estimates.Ab.copy())
if self.params.get('online', 'normalize'):
self.estimates.Ab /= 1./self.img_norm.reshape(-1, order='F')[:,np.newaxis]
self.estimates.Ab = csc_matrix(self.estimates.Ab)
self.estimates.A, self.estimates.b = self.estimates.Ab[:, self.params.get('init', 'nb'):], self.estimates.Ab[:, :self.params.get('init', 'nb')].toarray()
self.estimates.C, self.estimates.f = self.estimates.C_on[self.params.get('init', 'nb'):self.M, t - t //
epochs:t], self.estimates.C_on[:self.params.get('init', 'nb'), t - t // epochs:t]
noisyC = self.estimates.noisyC[self.params.get('init', 'nb'):self.M, t - t // epochs:t]
self.estimates.YrA = noisyC - self.estimates.C
if self.estimates.OASISinstances is not None:
self.estimates.bl = [osi.b for osi in self.estimates.OASISinstances]
self.estimates.S = np.stack([osi.s for osi in self.estimates.OASISinstances])
self.estimates.S = self.estimates.S[:, t - t // epochs:t]
else:
self.estimates.bl = [0] * self.estimates.C.shape[0]
self.estimates.S = np.zeros_like(self.estimates.C)
if self.params.get('online', 'ds_factor') > 1:
dims = Y_.shape[1:]
self.estimates.A = hstack([coo_matrix(cv2.resize(self.estimates.A[:, i].reshape(self.dims, order='F').toarray(),
dims[::-1]).reshape(-1, order='F')[:,None]) for i in range(self.N)], format='csc')
def test():
# read rf and tr arrays from mat file
mat_contents = sio.loadmat(pathdat+'mrf_t1t2b0pd_mrf_randphasecyc_traintest.mat');
far = np.array(mat_contents["rf"].astype(np.complex128).squeeze())
trr = np.array(mat_contents["trr"].astype(np.float64).squeeze())
# input MRF time courses
mat_contents2 = sio.loadmat(pathdat+'datax1.mat');
data_x = np.array(mat_contents2["datax1"]).astype(np.float64)
# prepare for sequence simulation, y->x_hat
Nk = far.shape[0]
Nexample = data_x.shape[0]
ti = 10 #ms
M0 = np.array([0.0,0.0,1.0]).astype(np.float64)
#image size
nx = 217
ny = 181
# mask in ksp
mask = ut.mask3d( nx, ny, Nk, [15,15,0], 0.4)
#FTm = opts.FFT2d_kmask(mask)
FTm = cuopts.FFT2d_cuda_kmask(mask)
#intial timing
timing = utc.timing()
def mytest(*args):
"""
Hypothesis test for test_self_defined_statistical_tests
"""
mytest.__name__ = "Test name"
_, pval = stats.ks_2samp(*args)
return pval
def test_scipy_2p(self):
# carry out fit
S = bl.Study()
S.loadData(np.array([1, 2, 3, 4, 5]))
L = bl.om.SciPy(scipy.stats.norm, 'loc', bl.cint(0, 7, 200), 'scale', bl.oint(0, 1, 200))
S.setOM(L)
S.setTM(bl.tm.Static())
S.fit()
# test model evidence value
np.testing.assert_almost_equal(S.logEvidence, -13.663836264357225, decimal=5,
err_msg='Erroneous log-evidence value.')
for line in fileinput.input():
[o, va, ia, vb, ib] = [float(x.strip()) for x in line.split(',')]
target.append(o)
voltages_a.append(va)
currents_a.append(ia)
voltages_b.append(vb)
currents_b.append(ib)
plot(voltages_a, '.', label='va')
plot(currents_a, '.', label='ia')
plot(voltages_b, '.', label='vb')
plot(currents_b, '.', label='ib')
plot(target, '.', label='dac')
xlabel('time (samples)')
ylabel('amplitude (bits)')
sio.savemat("smu.mat", {"v": voltages_a, "i": currents_a, "setpoint": target})
legend(loc='best')
figure()
semilogy(fftfreq(len(voltages_a), 2e-05), fft(voltages_a), '.')
semilogy(fftfreq(len(voltages_b), 2e-05), fft(voltages_b), '.')
semilogy(fftfreq(len(target), 2e-05), fft(target), '.')
savefig("svmi-fft.png")
show()
if u in layers_nx[-1]:
frontier.add(v)
edge_frontier.add(g.edge_id(u, v))
else:
layers_nx.append(frontier)
edges_nx.append(edge_frontier)
frontier = set([v])
edge_frontier = set([g.edge_id(u, v)])
# avoids empty successors
if len(frontier) > 0 and len(edge_frontier) > 0:
layers_nx.append(frontier)
edges_nx.append(edge_frontier)
return layers_nx, edges_nx
g = dgl.DGLGraph()
a = sp.random(n, n, 3 / n, data_rvs=lambda n: np.ones(n))
g.from_scipy_sparse_matrix(a)
g_nx = g.to_networkx()
src = random.choice(range(n))
layers_nx, _ = _bfs_nx(g_nx, src)
layers_dgl = dgl.bfs_nodes_generator(g, src)
assert len(layers_dgl) == len(layers_nx)
assert all(toset(x) == y for x, y in zip(layers_dgl, layers_nx))
g_nx = nx.random_tree(n, seed=42)
g = dgl.DGLGraph()
g.from_networkx(g_nx)
src = 0
_, edges_nx = _bfs_nx(g_nx, src)
edges_dgl = dgl.bfs_edges_generator(g, src)
assert len(edges_dgl) == len(edges_nx)
assert all(toset(x) == y for x, y in zip(edges_dgl, edges_nx))
def main():
# load data
mat = scipy.io.loadmat('../data/COIL20.mat')
X = mat['X'] # data
X = X.astype(float)
y = mat['Y'] # label
y = y[:, 0]
n_samples, n_features = X.shape # number of samples and number of features
# split data into 10 folds
ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True)
# perform evaluation on classification task
num_fea = 100 # number of selected features
clf = svm.LinearSVC() # linear SVM
correct = 0
for train, test in ss:
# obtain the score of each feature on the training set