Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "ecdsa in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'ecdsa' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def _recover_key(self, digest, signature, i) :
        ''' Recover the public key from the sig
            http://www.secg.org/sec1-v2.pdf
        '''
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i %2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2 ) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        # generate R
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        # compute Q
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)
        # verify message
        if not ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1).verify_digest(signature, digest,
                                                                                            sigdecode=ecdsa.util.sigdecode_string) :
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i %2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2 ) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        # generate R
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        # compute Q
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)
        # verify message
        if not ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1).verify_digest(signature, digest,
                                                                                            sigdecode=ecdsa.util.sigdecode_string) :
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
def recover_public_key(self, digest, signature, i):
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i % 2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R +
                                                        (-e % order) * G)
        if not ecdsa.VerifyingKey.from_public_point(
                Q, curve=ecdsa.SECP256k1).verify_digest(
                    signature, digest, sigdecode=ecdsa.util.sigdecode_string):
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
def recover_public_key(digest, signature, i, message=None):
    """ Recover the public key from the the signature
    """

    # See http: //www.secg.org/download/aid-780/sec1-v2.pdf section 4.1.6 primarily
    curve = ecdsa.SECP256k1.curve
    G = ecdsa.SECP256k1.generator
    order = ecdsa.SECP256k1.order
    yp = i % 2
    r, s = ecdsa.util.sigdecode_string(signature, order)
    # 1.1
    x = r + (i // 2) * order
    # 1.3. This actually calculates for either effectively 02||X or 03||X depending on 'k' instead of always for 02||X as specified.
    # This substitutes for the lack of reversing R later on. -R actually is defined to be just flipping the y-coordinate in the elliptic curve.
    alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
    beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
    y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
    # 1.4 Constructor of Point is supposed to check if nR is at infinity.
    R = ecdsa.ellipticcurve.Point(curve, x, y, order)
    # 1.5 Compute e
    e = ecdsa.util.string_to_number(digest)
    # 1.6 Compute Q = r^-1(sR - eG)
    Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)

    if SECP256K1_MODULE == "cryptography" and message is not None:
        if not isinstance(message, bytes):
def _recover_key(self, digest, signature, i) :
        ''' Recover the public key from the sig
            http://www.secg.org/sec1-v2.pdf
        '''
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i %2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2 ) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        # generate R
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        # compute Q
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)
        # verify message
        if not ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1).verify_digest(signature, digest,
                                                                                            sigdecode=ecdsa.util.sigdecode_string) :
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
recid = meta - 27

    j = recid // 2
    yp = 0 if (recid % 2) == 0 else 1

    ecdsa_signature = signature_bytes[1:]

    r, s = ecdsa.util.sigdecode_string(ecdsa_signature, order)
    
    # 1.1
    x = r + j * order

    # 1.3. This actually calculates for either effectively 02||X or 03||X depending on 'k' instead of always for 02||X as specified.
    # This substitutes for the lack of reversing R later on. -R actually is defined to be just flipping the y-coordinate in the elliptic curve.
    alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
    beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
    if (beta - yp) % 2 == 0:
        y = beta
    else:
        y = curve.p() - beta

    # 1.4 Constructor of Point is supposed to check if nR is at infinity. 
    R = ecdsa.ellipticcurve.Point(curve, x, y, order)
    
    # 1.5 Compute e
    h = double_sha256(format_message_for_signing(message))
    e = ecdsa.util.string_to_number(h)

    # 1.6 Compute Q = r^-1(sR - eG)
    Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)

    # Not strictly necessary, but let's verify the message for paranoia's sake.
def get_rpc_credentials(config: SimpleConfig) -> Tuple[str, str]:
    rpc_user = config.get('rpcuser', None)
    rpc_password = config.get('rpcpassword', None)
    if rpc_user is None or rpc_password is None:
        rpc_user = 'user'
        import ecdsa, base64
        bits = 128
        nbytes = bits // 8 + (bits % 8 > 0)
        pw_int = ecdsa.util.randrange(pow(2, bits))
        pw_b64 = base64.b64encode(
            pw_int.to_bytes(nbytes, 'big'), b'-_')
        rpc_password = to_string(pw_b64, 'ascii')
        config.set_key('rpcuser', rpc_user)
        config.set_key('rpcpassword', rpc_password, save=True)
    elif rpc_password == '':
        _logger.warning('RPC authentication is disabled.')
    return rpc_user, rpc_password
http://www.secg.org/sec1-v2.pdf
        '''
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i %2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2 ) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        # generate R
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        # compute Q
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)
        # verify message
        if not ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1).verify_digest(signature, digest,
                                                                                            sigdecode=ecdsa.util.sigdecode_string) :
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
http://www.secg.org/sec1-v2.pdf
        '''
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i %2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2 ) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        # generate R
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        # compute Q
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R + (-e % order) * G)
        # verify message
        if not ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1).verify_digest(signature, digest,
                                                                                            sigdecode=ecdsa.util.sigdecode_string) :
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)
def recover_public_key(self, digest, signature, i):
        curve = ecdsa.SECP256k1.curve
        G = ecdsa.SECP256k1.generator
        order = ecdsa.SECP256k1.order
        yp = (i % 2)
        r, s = ecdsa.util.sigdecode_string(signature, order)
        x = r + (i // 2) * order
        alpha = ((x * x * x) + (curve.a() * x) + curve.b()) % curve.p()
        beta = ecdsa.numbertheory.square_root_mod_prime(alpha, curve.p())
        y = beta if (beta - yp) % 2 == 0 else curve.p() - beta
        R = ecdsa.ellipticcurve.Point(curve, x, y, order)
        e = ecdsa.util.string_to_number(digest)
        Q = ecdsa.numbertheory.inverse_mod(r, order) * (s * R +
                                                        (-e % order) * G)
        if not ecdsa.VerifyingKey.from_public_point(
                Q, curve=ecdsa.SECP256k1).verify_digest(
                    signature, digest, sigdecode=ecdsa.util.sigdecode_string):
            return None
        return ecdsa.VerifyingKey.from_public_point(Q, curve=ecdsa.SECP256k1)

Is your System Free of Underlying Vulnerabilities?
Find Out Now