Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "dataclasses in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'dataclasses' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

import dataclasses
import magma as m


@dataclasses.dataclass(eq=True, frozen=True)
class GlobalBufferParams:
    # Tile parameters
    NUM_GLB_TILES: int = 16
    TILE_SEL_ADDR_WIDTH: int = m.bitutils.clog2(NUM_GLB_TILES)

    # CGRA Tiles
    NUM_CGRA_TILES: int = 32

    # CGRA tiles per GLB tile
    CGRA_PER_GLB: int = NUM_CGRA_TILES // NUM_GLB_TILES # 2

    # Bank parameters
    BANKS_PER_TILE: int = 2
    BANK_SEL_ADDR_WIDTH: int = m.bitutils.clog2(BANKS_PER_TILE)
    BANK_DATA_WIDTH: int = 64
    BANK_ADDR_WIDTH: int = 17
features[layer] = np.zeros(shape, dtype=np.float32)
        for y in range(ntiles[0]):
            for x in range(ntiles[1]):
                xy = np.array([y, x])
                start = xy * tile_size
                end = start + tile_size
                if y == ntiles[0] - 1:
                    end[0] = img_size[0]
                if x == ntiles[1] - 1:
                    end[1] = img_size[1]
                tile = self.img[:, start[0]:end[0], start[1]:end[1]]
                pool.ensure_healthy()
                pool.request(FeatureMapRequest(start, SharedNDArray.copy(tile), layers))
        pool.reset_next_worker()
        for _ in range(np.prod(ntiles)):
            start, feats_tile = astuple(pool.resp_q.get())
            for layer, feat in feats_tile.items():
                scale, _ = self.layer_info(layer)
                start_f = start // scale
                end_f = start_f + np.array(feat.array.shape[-2:])
                features[layer][:, start_f[0]:end_f[0], start_f[1]:end_f[1]] = feat.array
                feat.unlink()

        return features
def test_initvars_post_init():
    @pydantic.dataclasses.dataclass
    class PathDataPostInit:
        path: Path
        base_path: dataclasses.InitVar[Optional[Path]] = None

        def __post_init__(self, base_path):
            if base_path is not None:
                self.path = base_path / self.path

    path_data = PathDataPostInit('world')
    assert 'path' in path_data.__dict__
    assert 'base_path' not in path_data.__dict__
    assert path_data.path == Path('world')

    with pytest.raises(TypeError) as exc_info:
        PathDataPostInit('world', base_path='/hello')
    assert str(exc_info.value) == "unsupported operand type(s) for /: 'str' and 'str'"
def test_no_init(self) -> None:
    @frozen_after_init
    class Test:
      pass

    test = Test()
    with self.assertRaises(FrozenInstanceError):
      test.x = 1  # type: ignore[attr-defined]
def test_add_new_field_after_init(self) -> None:
    @frozen_after_init
    class Test:

      def __init__(self, x: int) -> None:
        self.x = x

    test = Test(x=0)
    with self.assertRaises(FrozenInstanceError):
      test.y = "abc"  # type: ignore[attr-defined]
@dataclass
class ErrorDictIntKey:
    # invalid dict key, must be str
    dict: Dict[int, str] = field(default_factory=lambda: {10: "foo", 20: "bar"})


class RegularClass:
    pass


@dataclass
class ErrorDictUnsupportedValue:
    # invalid dict value type, not one of the supported types
    dict: Dict[str, RegularClass] = field(default_factory=dict)


@dataclass
class ErrorListUnsupportedValue:
    # invalid dict value type, not one of the supported types
    dict: List[RegularClass] = field(default_factory=list)


@dataclass
class ErrorListUnsupportedStructuredConfig:
    # Nesting of structured configs in Dict and List is not currently supported
    list: List[User] = field(default_factory=list)


@dataclass
class ListExamples:
import difflib
import collections
import dataclasses
from typing import Set, FrozenSet, Tuple, Any, List

Metadata = collections.namedtuple("Metadata", "version")
Package = collections.namedtuple("Package", "name type")
Info = collections.namedtuple("Info", "packages metadata")

SimilarPackages = collections.namedtuple("SimilarPackages", "pkg missed")
ProbableMatch = collections.namedtuple("ProbableMatch", "pkg ratio")


@dataclasses.dataclass()
class Analysis:
    """
    A package metadata analysis class. When given the raw syft and inline data, all necessary derivative information
    needed to do a comparison of package and metadata is performed, allowing callers to interpret the results
    """

    # all raw data from the inline scan and syft reports
    syft_data: Info
    inline_data: Info

    # all derivative information (derived from the raw data above)
    overlapping_packages: FrozenSet[Package] = dataclasses.field(init=False)
    extra_packages: FrozenSet[Package] = dataclasses.field(init=False)
    missing_packages: FrozenSet[Package] = dataclasses.field(init=False)

    inline_metadata: Set[Tuple[Any, Any]] = dataclasses.field(init=False)
"""
        root = Node(name="Root", geometry=Sphere(radius=10.0))
        a = Node(name="A", parent=root, geometry=Sphere(radius=1.0))
        a.translate((5.0, 0.0, 0.0))
        scene = Scene(root)
        tracer = PhotonTracer(scene)
        position = (-2.0, 0.0, 0.0)
        direction = (1.0, 0.0, 0.0)
        initial_ray = Ray(
            position=position, direction=direction, wavelength=555.0, is_alive=True
        )
        expected_history = [
            initial_ray,  # Starting ray
            replace(initial_ray, position=(4.0, 0.0, 0.0)),  # First intersection
            replace(initial_ray, position=(6.0, 0.0, 0.0)),  # Second intersection
            replace(initial_ray, position=(10.0, 0.0, 0.0), is_alive=False),  # Exit ray
        ]
        history = tracer.follow(initial_ray)
        for pair in zip(history, expected_history):
            assert pair[0] == pair[1]
def test_reader_values(create_csv):
    csv_file = create_csv(
        [{'name': 'User1', 'age': 40}, {'name': 'User2', 'age': 30}]
    )

    with csv_file.open() as f:
        reader = DataclassReader(f, User)
        items = list(reader)

        assert items and len(items) == 2

        for item in items:
            assert dataclasses.is_dataclass(item)

        user1, user2 = items[0], items[1]

        assert user1.name == 'User1'
        assert user1.age == 40

        assert user2.name == 'User2'
        assert user2.age == 30
def build_typed_field(self, type_hint, extra_kwargs=None):
        testclass = dataclasses.make_dataclass('TestDataclass', [('test_field', type_hint)])
        serializer = DataclassSerializer(dataclass=testclass)
        type_info = field_utils.get_type_info(serializer.dataclass_definition.field_types['test_field'])

        extra_kwargs = extra_kwargs or {}
        return serializer.build_typed_field('test_field', type_info, extra_kwargs)

Is your System Free of Underlying Vulnerabilities?
Find Out Now