Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "torchvision in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'torchvision' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def dataloaders(batch_size: int, num_workers: int = 32) -> Tuple[DataLoader, DataLoader]:
    num_workers = num_workers if batch_size <= 4096 else num_workers // 2

    post_transforms = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ])

    train_dataset = torchvision.datasets.ImageNet(
        root='imagenet',
        split='train',
        transform=torchvision.transforms.Compose([
            torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0)),
            torchvision.transforms.RandomHorizontalFlip(),
            post_transforms,
        ])
    )
    test_dataset = torchvision.datasets.ImageNet(
        root='imagenet',
        split='val',
        transform=torchvision.transforms.Compose([
def __init__(self, dataset_dir, crop_size, upscale_factor):
        super(TrainDataset, self).__init__()
        self.image_filenames = [join(dataset_dir, x) for x in listdir(dataset_dir) if is_image_file(x)]
        crop_size = calculate_valid_crop_size(crop_size, upscale_factor)
        self.hr_preprocess = Compose([CenterCrop(384), RandomCrop(crop_size), ToTensor()])
        self.lr_preprocess = Compose([ToPILImage(), Resize(crop_size // upscale_factor, interpolation=Image.BICUBIC), ToTensor()])
args.init_model_cd = os.path.expanduser(args.init_model_cd)
    if torch.cuda.is_available() == False:
        raise Exception('At least one gpu must be available.')
    else:
        gpu = torch.device('cuda:0')

    # create result directory (if necessary)
    if os.path.exists(args.result_dir) == False:
        os.makedirs(args.result_dir)
    for s in ['phase_1', 'phase_2', 'phase_3']:
        if os.path.exists(os.path.join(args.result_dir, s)) == False:
            os.makedirs(os.path.join(args.result_dir, s))

    # dataset
    trnsfm = transforms.Compose([
        transforms.Resize(args.cn_input_size),
        transforms.RandomCrop((args.cn_input_size, args.cn_input_size)),
        transforms.ToTensor(),
    ])
    print('loading dataset... (it may take a few minutes)')
    train_dset = ImageDataset(os.path.join(args.data_dir, 'train'), trnsfm, recursive_search=args.recursive_search)
    test_dset = ImageDataset(os.path.join(args.data_dir, 'test'), trnsfm, recursive_search=args.recursive_search)
    train_loader = DataLoader(train_dset, batch_size=(args.bsize // args.bdivs), shuffle=True)

    # compute mean pixel value of training dataset
    mpv = np.zeros(shape=(3,))
    if args.mpv == None:
        pbar = tqdm(total=len(train_dset.imgpaths), desc='computing mean pixel value for training dataset...')
        for imgpath in train_dset.imgpaths:
            img = Image.open(imgpath)
            x = np.array(img, dtype=np.float32) / 255.
            mpv += x.mean(axis=(0,1))
recall = [1.0, 0.8533334, 0.28, 0.0666667, 0.0]


for n_iter in range(100):
    s1 = torch.rand(1)  # value to keep
    s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar(os.path.join("data", "scalar_systemtime"), s1[0], n_iter)
    # data grouping by `slash`
    writer.add_scalar(os.path.join("data", "scalar_customtime"), s1[0], n_iter, walltime=n_iter)
    writer.add_scalars(os.path.join("data", "scalar_group"), {"xsinx": n_iter * np.sin(n_iter),
                                             "xcosx": n_iter * np.cos(n_iter),
                                             "arctanx": np.arctan(n_iter)}, n_iter)
    x = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(x, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)  # Tensor
        # writer.add_image('astronaut', skimage.data.astronaut(), n_iter) # numpy
        # writer.add_image('imread',
        # skimage.io.imread('screenshots/audio.png'), n_iter) # numpy
        x = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # sound amplitude should in [-1, 1]
            x[i] = np.cos(freqs[n_iter // 10] * np.pi *
                          float(i) / float(sample_rate))
        writer.add_audio('myAudio', x, n_iter)
        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
        writer.add_text('markdown Text', '''a|b\n-|-\nc|d''', n_iter)
        for name, param in resnet18.named_parameters():
            if 'bn' not in name:
                writer.add_histogram(name, param, n_iter)
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(
cache['ssim'] += ssim
				cache['psnr'] += psnr
				
				# Avoid out of memory crash on 8G GPU
				if len(dev_images) < 60 :
					dev_images.extend([to_image()(val_hr_restore.squeeze(0)), to_image()(hr.data.cpu().squeeze(0)), to_image()(sr.data.cpu().squeeze(0))])
			
			dev_images = torch.stack(dev_images)
			dev_images = torch.chunk(dev_images, dev_images.size(0) // 3)
			
			dev_save_bar = tqdm(dev_images, desc='[saving training results]')
			index = 1
			for image in dev_save_bar:
				image = utils.make_grid(image, nrow=3, padding=5)
				utils.save_image(image, out_path + 'epoch_%d_index_%d.png' % (epoch, index), padding=5)
				index += 1
		
			if use_tensorboard:			
				log_value('ssim', cache['ssim']/len(dev_loader), epoch)
				log_value('psnr', cache['psnr']/len(dev_loader), epoch)
np.random.seed(1)
torch.cuda.manual_seed(1)


# /////////////// Dataset Loading ///////////////

if args.c100:
    # mean and standard deviation of channels of CIFAR-10 images
    mean = [x / 255 for x in [125.3, 123.0, 113.9]]
    std = [x / 255 for x in [63.0, 62.1, 66.7]]

    train_transform = trn.Compose([trn.RandomHorizontalFlip(), trn.RandomCrop(32, padding=4),
                                   trn.ToTensor(), trn.Normalize(mean, std)])
    test_transform = trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)])

    train_data = dset.CIFAR100('/share/data/vision-greg/cifarpy', train=True, transform=train_transform, download=False)
    test_data = dset.CIFAR100('/share/data/vision-greg/cifarpy', train=False, transform=test_transform, download=False)
    num_classes = 100

else:
    train_data = dset.ImageFolder('/share/data/vision-greg/DistortedImageNet/Icons-50',
                                  transform=trn.Compose([trn.Resize((32, 32)), trn.RandomHorizontalFlip(),
                                                         trn.RandomCrop(32, padding=4), trn.ToTensor(),
                                                         # RandomErasing()
                                                         ]))
    test_data = dset.ImageFolder('/share/data/vision-greg/DistortedImageNet/Icons-50',
                                 transform=trn.Compose([trn.Resize((32, 32)), trn.ToTensor()]))
    num_classes = 50

    if args.traditional:
        filtered_imgs = []
        for img in train_data.samples:
def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
for _ in range(n - 1):
        v = linear_map(v)
        cols.append(v)
    return torch.stack(cols, dim=-1)

batch_size = 256
if use_cuda:
    loader_args = {'num_workers': 8, 'pin_memory': True}
else:
    loader_args = {'num_workers': 1, 'pin_memory': False}

def loader_from_dataset(dataset):
    return torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                       shuffle=True, **loader_args)

mnist_normalize = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])
mnist_train = datasets.MNIST(
    '../data', train=True, download=True, transform=mnist_normalize)
# Just for faster training on CPU
# mnist_train.train_data = mnist_train.train_data[:5000]
mnist_test = datasets.MNIST(
    'data', train=False, download=True, transform=mnist_normalize)
mnist_train, mnist_valid = get_train_valid_datasets(mnist_train)
train_loader = loader_from_dataset(mnist_train)
valid_loader = loader_from_dataset(mnist_valid)
test_loader = loader_from_dataset(mnist_test)

n_features = 28 * 28
n_classes = 10
def start_websocket_server_worker(
    id, host, port, hook, verbose, keep_labels=None, training=True
):  # pragma: no cover
    """Helper function for spinning up a websocket server and setting up the local datasets."""

    server = WebsocketServerWorker(id=id, host=host, port=port, hook=hook, verbose=verbose)

    # Setup toy data (mnist example)
    mnist_dataset = datasets.MNIST(
        root="./data",
        train=training,
        download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        ),
    )

    if training:
        indices = np.isin(mnist_dataset.targets, keep_labels).astype("uint8")
        logger.info("number of true indices: %s", indices.sum())
        selected_data = (
            torch.native_masked_select(mnist_dataset.data.transpose(0, 2), torch.tensor(indices))
            .view(28, 28, -1)
            .transpose(2, 0)
        )
        logger.info("after selection: %s", selected_data.shape)
        selected_targets = torch.native_masked_select(mnist_dataset.targets, torch.tensor(indices))

        dataset = sy.BaseDataset(

Is your System Free of Underlying Vulnerabilities?
Find Out Now