Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'cytoolz' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
@curry
def get_uncle_reward(block_reward: int, block_number: int, uncle: BaseBlock) -> int:
block_number_delta = block_number - uncle.block_number
validate_lte(block_number_delta, MAX_UNCLE_DEPTH)
return (8 - block_number_delta) * block_reward // 8
@curry
def compute_difficulty(
bomb_delay: int,
parent_header: BlockHeader,
timestamp: int) -> int:
"""
https://github.com/ethereum/EIPs/issues/100
"""
parent_timestamp = parent_header.timestamp
validate_gt(timestamp, parent_timestamp, title="Header.timestamp")
parent_difficulty = parent_header.difficulty
offset = parent_difficulty // DIFFICULTY_ADJUSTMENT_DENOMINATOR
has_uncles = parent_header.uncles_hash != EMPTY_UNCLE_HASH
adj_factor = max(
(
Returns
-------
illum : np.ndarray, float, shape (M, N)
The estimated illumination over the image field.
See Also
--------
`correct_image_illumination`, `correct_multiimage_illumination`.
"""
# this function follows the "PyToolz" streaming data model to
# obtain the illumination estimate.
# first, define the functions for each individual step:
in_range = ('image' if input_bitdepth is None
else (0, 2**input_bitdepth - 1))
rescale = tz.curry(exposure.rescale_intensity)
normalize = (tz.partial(stretchlim, bottom=stretch_quantile)
if stretch_quantile > 0
else skimage.img_as_float)
# produce a stream of properly-scaled images
ims = (tz.pipe(fn, io.imread, rescale(in_range=in_range), normalize)
for fn in fns)
# take the mean of that stream
mean_image = mean(ims)
# return the median filter of that mean
radius = radius or min(mean_image.shape) // 4
illum = ndi.percentile_filter(mean_image, percentile=(quantile * 100),
footprint=morphology.disk(radius))
return illum
def get_branch_indices(node_index: int, depth: int) -> Iterable[int]:
"""
Get the indices of all ancestors up until the root for a node with a given depth.
"""
yield from take(depth, iterate(lambda index: index // 2, node_index))
def get_branch_indices(node_index: int, depth: int) -> Sequence[int]:
"""Get the indices of all ancestors up until the root for a node with a given depth."""
return tuple(take(depth, iterate(lambda index: index // 2, node_index)))
See Also
--------
`correct_image_illumination`, `correct_multiimage_illumination`.
"""
# this function follows the "PyToolz" streaming data model to
# obtain the illumination estimate.
# first, define the functions for each individual step:
in_range = ('image' if input_bitdepth is None
else (0, 2**input_bitdepth - 1))
rescale = tz.curry(exposure.rescale_intensity)
normalize = (tz.partial(stretchlim, bottom=stretch_quantile)
if stretch_quantile > 0
else skimage.img_as_float)
# produce a stream of properly-scaled images
ims = (tz.pipe(fn, io.imread, rescale(in_range=in_range), normalize)
for fn in fns)
# take the mean of that stream
mean_image = mean(ims)
# return the median filter of that mean
radius = radius or min(mean_image.shape) // 4
illum = ndi.percentile_filter(mean_image, percentile=(quantile * 100),
footprint=morphology.disk(radius))
return illum
def curry_namespace(ns):
return dict(
(name, curry(f) if should_curry(f) else f)
for name, f in ns.items()
if "__" not in name
)
def generate_collations():
explicit_params = {}
for period in itertools.count():
default_params = {
"shard_id": 0,
"period": period,
"body": zpad_right(b"body%d" % period, COLLATION_SIZE),
"proposer_address": zpad_right(b"proposer%d" % period, 20),
}
# only calculate chunk root if it wouldn't be replaced anyway
if "chunk_root" not in explicit_params:
default_params["chunk_root"] = calc_chunk_root(default_params["body"])
params = merge(default_params, explicit_params)
header = CollationHeader(
shard_id=params["shard_id"],
chunk_root=params["chunk_root"],
period=params["period"],
proposer_address=params["proposer_address"],
)
collation = Collation(header, params["body"])
explicit_params = (yield collation) or {}
def test_call_checks_nonce(vm):
computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION)
assert computation.is_success
computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION)
assert computation.is_error
transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, {
"nonce": 2,
})).as_signed_transaction(PRIVATE_KEY)
computation, _ = vm.apply_transaction(transaction)
assert computation.is_error
def test_from_to_iterable(nums):
nums_pl = nums
nums_pl = aio.from_iterable(nums_pl)
nums_pl = cz.partition_all(10, nums_pl)
nums_pl = aio.map(sum, nums_pl)
nums_pl = list(nums_pl)
nums_py = nums
nums_py = cz.partition_all(10, nums_py)
nums_py = map(sum, nums_py)
nums_py = list(nums_py)
assert nums_py == nums_pl