Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "numpy in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'numpy' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def main():
    image = cv2.imread("test_image1.png")
    step_size_px = 10
    vertex_row_count = image.shape[0] // step_size_px
    vertex_col_count = image.shape[1] // step_size_px
    vertex_count = vertex_row_count * vertex_col_count

    face_row_count = vertex_row_count - 1
    face_col_count = vertex_col_count - 1

    print("Grid size: ", vertex_row_count, " x ", vertex_col_count)
    print("Vertex count: ", vertex_count)
    warp_coefficient_count = 2 * vertex_count

    # G = np.zeros((2 * face_col_count * face_row_count, vertex_col_count * vertex_row_count), np.float32)
    G = np.zeros(
        (face_col_count * vertex_row_count + face_row_count * vertex_col_count, vertex_count),
        np.float32)

    ix_G_row = 0
    for ix_dx_row in range(vertex_row_count):
        for ix_dx_col in range(face_col_count):
            col_index0 = vertex_col_count * ix_dx_row + ix_dx_col
            col_index1 = col_index0 + 1
            G[ix_G_row, col_index0] = -1.0
            G[ix_G_row, col_index1] = 1.0
            ix_G_row += 1
    for ix_dy_row in range(face_row_count):
        for ix_dy_col in range(vertex_col_count):
            col_index0 = vertex_col_count * ix_dy_row + ix_dy_col
            col_index1 = col_index0 + vertex_col_count
            G[ix_G_row, col_index0] = -1.0
def split_bit_stream(self, width, bit_stream, high_bits):
        # print bit_stream
        # print high_bits

        # Split bitstream into bytes
        byte_width = width // 7
        bit_pos = 0
        filler_bit = "0"
        byte_splits = np.zeros((byte_width), dtype=np.uint8)

        for byte_index in range(byte_width):
            remaining_bits = len(bit_stream) - bit_pos
                
            bit_chunk = ""
            
            if remaining_bits < 0:
                bit_chunk = filler_bit * 7
            else:   
                if remaining_bits < 7:
                    bit_chunk = bit_stream[bit_pos:]
                    bit_chunk += filler_bit * (7-remaining_bits)
                else:   
                    bit_chunk = bit_stream[bit_pos:bit_pos+7]
            
            bit_chunk = bit_chunk[::-1]
import cv2
import numpy as np
import scipy.spatial
import sys

import algorithm
import binarize
import lib
from lib import GREEN

N_values = np.array([64, 64, 64, 128, 128, 128, 256, 256, 256, 256])
k_values = np.array([5, 4, 3, 5, 4, 3, 5, 4, 3, 2])
s_values = N_values.astype(np.float64) / k_values

theta_values = np.arange(32) / np.pi

# radius of circle for "nearby" CCs projection
radius = 100
radius_sq = radius ** 2

epsilon = 2.8

def pack_label(s, theta):
    return theta * s_values.shape[0] + s

def unpack_label(label):
    s_len = s_values.shape[0]
    return label % s_len, label // s_len

def V_p(nearby_centroids, centroids_rotated, ellipses_sheared):
    result = np.zeros((centroids_rotated[0].shape[0],
def _equalize_pil(img, mask=None):
    histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
    h = [_f for _f in histogram if _f]

    if len(h) <= 1:
        return img.copy()

    step = np.sum(h[:-1]) // 255
    if not step:
        return img.copy()

    lut = np.empty(256, dtype=np.uint8)
    n = step // 2
    for i in range(256):
        lut[i] = min(n // step, 255)
        n += histogram[i]

    return cv2.LUT(img, np.array(lut))
# ERI[:,jl]
    eri_col = mol.intor('int2e_sph',
                         shls_slice=(0,mol.nbas,0,mol.nbas,sj,sj+1,sl,sl+1))
    cj, cl = max(j-dims[sj],0), max(l-dims[sl],0)
    chol_vecs[0] = numpy.copy(eri_col[:,:,cj,cl].reshape(nao*nao)) / delta_max**0.5

    nchol = 0
    while abs(delta_max) > max_error:
        # Update cholesky vector
        start = time.time()
        # M'_ii = \sum_x L_i^x L_i^x
        Mapprox += chol_vecs[nchol] * chol_vecs[nchol]
        # D_ii = M_ii - M'_ii
        delta = diag - Mapprox
        nu = numpy.argmax(numpy.abs(delta))
        delta_max = numpy.abs(delta[nu])
        # Compute ERI chunk.
        # shls_slice computes shells of integrals as determined by the angular
        # momentum of the basis function and the number of contraction
        # coefficients. Need to search for AO index within this shell indexing
        # scheme.
        # AO index.
        j = nu // nao
        l = nu % nao
        # Associated shell index.
        sj = numpy.searchsorted(dims, j)
        sl = numpy.searchsorted(dims, l)
        if dims[sj] != j and j != 0:
            sj -= 1
        if dims[sl] != l and l != 0:
            sl -= 1
        # Compute ERI chunk.
def test_compare_rankings():
    """``compare`` should work as expected for rankings."""
    params = np.array([0, 100, -100, -100, -100])
    x1 = compare((3, 0), params, rank=True)
    assert np.array_equal(x1, np.array([0, 3]))
    x2 = compare((3, 0, 1), params, rank=True)
    assert np.array_equal(x2, np.array([1, 0, 3]))
# secondary mesh
h = [(csz, npadz-4, -pf), (csz, ncz), (csz, npadz-4, pf)]
meshs = Mesh.TensorMesh(3*[h], x0 = 'CCC')

# mappings
primaryMapping = (
    Maps.ExpMap(meshp) *
    Maps.SurjectFull(meshp) *
    Maps.Projection(nP=8, index=[0])
)

mapping = (
    Maps.ExpMap(meshs) *
    Maps.ParametrizedBlockInLayer(meshs) *
    Maps.Projection(
        nP=8, index=np.hstack([np.r_[0], np.arange(0, 8)])
    )
)

primaryMap2Meshs = (
    Maps.ExpMap(meshs) *
    Maps.SurjectFull(meshs) *
    Maps.Projection(nP=8, index=[0])
)


class PrimSecFDEMTest(object):

    # --------------------- Run some tests! --------------------- #
    def DataTest(self):
        print('\nTesting Data')
        dpred_primsec = self.secondaryProblem.dpred(
def test_small(self):
        assert len(self.image.files) == self.num_files_in_sample

        data = np.asarray([0xff, 0xff, 0x00, 0x60, 0x01, 0x60, 1, 2], dtype=np.uint8)
        self.image.write_file("TEST.XEX", None, data)
        assert len(self.image.files) == self.num_files_in_sample + 1

        data2 = np.frombuffer(self.image.find_file("TEST.XEX"), dtype=np.uint8)
        assert np.array_equal(data, data2[0:len(data)])
def load_cifar(cifar_location, cifar_filename="train.data", norm=False):
    cifar_path = cifar_location + "/" + cifar_filename
    print("Source file: %s" % cifar_path)
    df = pd.read_csv(cifar_path, sep=",", header=None)
    data = df.values
    print("Number of image files: %d" % len(data))
    y = data[:, 0]
    X = data[:, 1:]
    Z = X
    if norm:
        mu = np.mean(X.T, 0)
        sigma = np.var(X.T, 0)
        Z = (X.T - mu) / np.array([np.sqrt(z) if z > 0 else 1. for z in sigma])
        Z = Z.T
    return (Z, y)
# Initialize scaling
        d = np.ones(n + m)
        d_temp = np.ones(n + m)

        # Define reduced KKT matrix to scale
        KKT = spa.vstack([
              spa.hstack([P, A.T]),
              spa.hstack([A, spa.csc_matrix((m, m))])]).tocsc()

        # Iterate Scaling
        for i in range(settings.scaling):
            for j in range(n + m):
                norm_col_j = spa.linalg.norm(KKT[:, j],
                                             np.inf)
                if norm_col_j > SCALING_REG:
                    d_temp[j] = 1./(np.sqrt(norm_col_j))

            S_temp = spa.diags(d_temp)
            d = np.multiply(d, d_temp)
            KKT = S_temp.dot(KKT.dot(S_temp))

        # Obtain Scaler Matrices
        D = spa.diags(d[:n])
        if m == 0:
            # spa.diags() will throw an error if fed with an empty array
            E = spa.csc_matrix((0, 0))
        else:
            E = spa.diags(d[n:])

        # Scale problem Matrices
        P = D.dot(P.dot(D)).tocsc()
        A = E.dot(A.dot(D)).tocsc()

Is your System Free of Underlying Vulnerabilities?
Find Out Now