Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 6 Examples of "gaussian in functional component" in JavaScript

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'gaussian' in functional components in JavaScript. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

export function computeMetallicityValue(aRandomNumber: number, n2: number): number {
  const dist1 = gaussian(0.3, 0.1);
  const dist2 = gaussian(-0.45, 0.1);
  const val1 = dist1.ppf(aRandomNumber);
  const val2 = dist2.ppf(aRandomNumber);
  // According to stats.stackexchange.com there's a super mathy way to
  // combine two Gaussian distributions, but using a weighted choice
  // seems to produce similar results, so whatever.
  return weightedChoice([[val1, 1.5], [val2, 0.5]], n2);
}
export function computeMetallicityValue(aRandomNumber: number, n2: number): number {
  const dist1 = gaussian(0.3, 0.1);
  const dist2 = gaussian(-0.45, 0.1);
  const val1 = dist1.ppf(aRandomNumber);
  const val2 = dist2.ppf(aRandomNumber);
  // According to stats.stackexchange.com there's a super mathy way to
  // combine two Gaussian distributions, but using a weighted choice
  // seems to produce similar results, so whatever.
  return weightedChoice([[val1, 1.5], [val2, 0.5]], n2);
}
import _ from 'lodash';
import gaussian from 'gaussian';
import CandidateGrid, {convertToCandidateGrid, convertFromCandidateGrid} from './candidateGrid';
import beamSearch from './beamSearch';
import {getMatches} from './common';
// randomize our word list, to introduce non-determinism early in the process.
// non-determinism is important if we don't to generate the same puzzle every timeI

const normal = gaussian(0, 1);

const sample = (mean, stdev) => Math.max(0.0001, mean + normal.ppf(Math.random()) * stdev);

// scoredWords: an object of shape { word: { score, stdev }, ... }
// returns an object with same keys { word: sampledScore }
const assignScores = (wordlist) => {
  const result = {};
  _.forEach(_.keys(wordlist), (k) => {
    result[k] = sample(wordlist[k].score, wordlist[k].stdev);
  });
  return result;
};

const makeWordlist = (words, score = 30, stdev = 10) => {
  const result = {};
  _.forEach(words, (k) => {
constructor(props) {
    super(props);
    this.getImage = this.getImage.bind(this);

    this.norm = gaussian(0, 1);

    this.state = {
      model: null,
      digitImg: tf.zeros([28, 28]),
      mu: 0,
      sigma: 0
    };
  }
}
        fitted.push(math.squeeze(math.multiply(point, fit.beta)))
        residuals.push(fit.residual)
        betas.push(fit.beta.toArray())
        const median = math.median(math.abs(fit.residual))
        wt[idx] = fit.residual.map(r => weightFunc(r, 6 * median, 2))
      })
    }

    const robustWeights = Array(n).fill(math.ones(this.n))
    for (let iter = 0; iter < this.options.iterations; iter++) iterate.bind(this)(robustWeights)

    const output = {fitted, betas, weights}

    if (this.options.band) {
      const z = gaussian(0, 1).ppf(1 - (1 - this.options.band) / 2)
      const halfwidth = weights.map((weight, idx) => {
        const V1 = math.sum(weight)
        const V2 = math.multiply(weight, weight)
        const intervalEstimate = Math.sqrt(math.multiply(math.square(residuals[idx]), weight) / (V1 - V2 / V1))
        return intervalEstimate * z
      })
      Object.assign(output, {halfwidth})
    }

    return output
  }
export default function gaussian(mean, variance = 10) {
  const dist = gauss(mean, variance);
  return words => dist.pdf(
    words.map(w => w.length).reduce((l, r) => l + r, 0)
  );
}

Is your System Free of Underlying Vulnerabilities?
Find Out Now