Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'patsy' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
env2 = EvalEnvironment([{"a": 11}], flags=test_flag)
assert env2.eval("a <> 0") == True
assert_raises(SyntaxError, env2.eval, "a != 0")
assert env2.subset(["a"]).flags == test_flag
assert env2.with_outer_namespace({"b": 10}).flags == test_flag
else:
test_flag = __future__.division.compiler_flag
assert test_flag & _ALL_FUTURE_FLAGS
env = EvalEnvironment([{"a": 11}], flags=0)
assert env.eval("a / 2") == 11 // 2 == 5
assert env.subset(["a"]).flags == 0
assert env.with_outer_namespace({"b": 10}).flags == 0
env2 = EvalEnvironment([{"a": 11}], flags=test_flag)
assert env2.eval("a / 2") == 11 * 1. / 2 != 5
env2.subset(["a"]).flags == test_flag
assert env2.with_outer_namespace({"b": 10}).flags == test_flag
])
assert col_indices.size > 0, "Could not find any matching columns!"
if coef_to_test is not None:
if len(factor_loc_totest) > 1:
raise ValueError("do not set coef_to_test if more than one factor_loc_totest is given")
samples = sample_description[factor_loc_totest].astype(type(coef_to_test)) == coef_to_test
one_cols = np.where(design_loc[samples][:, col_indices][0] == 1)
if one_cols.size == 0:
# there is no such column; modify design matrix to create one
design_loc[:, col_indices] = np.where(samples, 1, 0)
elif coef_to_test is not None:
# Directly select coefficients to test from design matrix (xarray):
# Check that coefficients to test are not dependent parameters if constraints are given:
# TODO: design_loc is sometimes xarray and sometimes patsy when it arrives here,
# should it not always be xarray?
if isinstance(design_loc, patsy.design_info.DesignMatrix):
col_indices = np.asarray([
design_loc.design_info.column_names.index(x)
for x in coef_to_test
])
else:
col_indices = np.asarray([
list(np.asarray(design_loc.coords['design_params'])).index(x)
for x in coef_to_test
])
if constraints_loc is not None:
dep_coef_indices = np.where(np.any(constraints_loc == -1, axis=0) == True)[0]
assert np.all([x not in dep_coef_indices for x in col_indices]), "cannot test dependent coefficient"
indep_coef_indices = np.where(np.any(constraints_loc == -1, axis=0) == False)[0]
## Fit GLM:
model = _fit(
def test_harmonic_transform():
x = np.arange(735688, 735688 + 100, 1)
design = patsy.dmatrix('0 + harm(x, 1)')
truth = np.vstack((np.cos(2 * np.pi / 365.25 * x),
np.sin(2 * np.pi / 365.25 * x))).T
np.testing.assert_equal(np.asarray(design), truth)
def raise_patsy_error(x):
raise PatsyError("WHEEEEEE")
formula = "raise_patsy_error(X) + Y"
def t_invalid(formula_like, data, depth, exc=PatsyError): # pragma: no cover
if isinstance(depth, int):
depth += 1
fs = [dmatrix, dmatrices]
if have_pandas:
fs += [dmatrix_pandas, dmatrices_pandas]
for f in fs:
try:
f(formula_like, data, depth)
except exc:
pass
else:
raise AssertionError
True,
[[1, 1], [1, 2], [1, 3]], ["Intercept", "x_in_env"])
t("~ x_in_env", {"x_in_env": [10, 20, 30]}, 0,
True,
[[1, 10], [1, 20], [1, 30]], ["Intercept", "x_in_env"])
# Trying to pull x_in_env out of our *caller* shouldn't work.
t_invalid("~ x_in_env", {}, 1, exc=(NameError, PatsyError))
# But then again it should, if called from one down on the stack:
def check_nested_call():
x_in_env = "asdf"
t("~ x_in_env", {}, 1,
True,
[[1, 1], [1, 2], [1, 3]], ["Intercept", "x_in_env"])
check_nested_call()
# passing in an explicit EvalEnvironment also works:
e = EvalEnvironment.capture(1)
t_invalid("~ x_in_env", {}, e, exc=(NameError, PatsyError))
e = EvalEnvironment.capture(0)
def check_nested_call_2():
x_in_env = "asdf"
t("~ x_in_env", {}, e,
True,
[[1, 1], [1, 2], [1, 3]], ["Intercept", "x_in_env"])
check_nested_call_2()
def make_termlist(*entries):
terms = []
for entry in entries:
terms.append(Term([LookupFactor(name) for name in entry]))
return terms
return_type="patsy"
)
design_scale, design_scale_names, constraints_scale, term_names_scale = constraint_system_from_star(
dmat=dmat_scale,
sample_description=sample_description,
formula=formula_scale,
as_numeric=as_numeric,
constraints=constraints_scale,
return_type="patsy"
)
# Define indices of coefficients to test:
constraints_loc_temp = constraints_loc if constraints_loc is not None else np.eye(design_loc.shape[-1])
# Check that design_loc is patsy, otherwise use term_names for slicing.
if factor_loc_totest is not None:
if not isinstance(design_loc, patsy.design_info.DesignMatrix):
col_indices = np.where([
x in factor_loc_totest
for x in term_names_loc
])[0]
else:
# Select coefficients to test via formula model:
col_indices = np.concatenate([
np.arange(design_loc.shape[-1])[design_loc.design_info.slice(x)]
for x in factor_loc_totest
])
assert len(col_indices) > 0, "Could not find any matching columns!"
if coef_to_test is not None:
if len(factor_loc_totest) > 1:
raise ValueError("do not set coef_to_test if more than one factor_loc_totest is given")
samples = sample_description[factor_loc_totest].astype(type(coef_to_test)) == coef_to_test
one_cols = np.where(design_loc[samples][:, col_indices][0] == 1)
def test_formula_likes():
# Plain array-like, rhs only
t([[1, 2, 3], [4, 5, 6]], {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"])
t((None, [[1, 2, 3], [4, 5, 6]]), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"])
t(np.asarray([[1, 2, 3], [4, 5, 6]]), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"])
t((None, np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"])
dm = DesignMatrix([[1, 2, 3], [4, 5, 6]], default_column_prefix="foo")
t(dm, {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"])
t((None, dm), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"])
# Plain array-likes, lhs and rhs
t(([1, 2], [[1, 2, 3], [4, 5, 6]]), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"],
[[1], [2]], ["y0"])
t(([[1], [2]], [[1, 2, 3], [4, 5, 6]]), {}, 0,
False,
[[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"],
[[1], [2]], ["y0"])
def t(formula_like, data, depth,
expect_full_designs,
expected_rhs_values, expected_rhs_names,
expected_lhs_values=None, expected_lhs_names=None): # pragma: no cover
if isinstance(depth, int):
depth += 1
def data_iter_maker():
return iter([data])
if (isinstance(formula_like, six.string_types + (ModelDesc, DesignInfo))
or (isinstance(formula_like, tuple)
and isinstance(formula_like[0], DesignInfo))
or hasattr(formula_like, "__patsy_get_model_desc__")):
if expected_lhs_values is None:
builder = incr_dbuilder(formula_like, data_iter_maker, depth)
lhs = None
(rhs,) = build_design_matrices([builder], data)
else:
builders = incr_dbuilders(formula_like, data_iter_maker, depth)
lhs, rhs = build_design_matrices(builders, data)
check_result(expect_full_designs, lhs, rhs, data,
expected_rhs_values, expected_rhs_names,
expected_lhs_values, expected_lhs_names)
else:
assert_raises(PatsyError, incr_dbuilders,
formula_like, data_iter_maker)
assert_raises(PatsyError, incr_dbuilder,
formula_like, data_iter_maker)