Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'tensorflow' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
r = int(minRadius * (2 ** (i))) # current radius
d_raw = 2 * r
d = tf.constant(d_raw, shape=[1])
d = tf.tile(d, [2]) # replicate d to 2 times in dimention 1, just used as slice
loc_k = loc[k,:] # k is bach index
# each image is first resize to biggest radius img: one_img2, then offset + loc_k - r is the adjust location
adjusted_loc = offset + loc_k - r # 2 * max_radius + loc_k - current_radius
one_img2 = tf.reshape(one_img, (one_img.get_shape()[0].value, one_img.get_shape()[1].value))
# crop image to (d x d)
zoom = tf.slice(one_img2, adjusted_loc, d) # slice start from adjusted_loc
# resize cropped image to (sensorBandwidth x sensorBandwidth)
# note that sensorBandwidth is side length for the smallest zoom (finest granularity)
zoom = tf.image.resize_bilinear(tf.reshape(zoom, (1, d_raw, d_raw, 1)), (sensorBandwidth, sensorBandwidth))
zoom = tf.reshape(zoom, (sensorBandwidth, sensorBandwidth))
imgZooms.append(zoom)
zooms.append(tf.stack(imgZooms))
zooms = tf.stack(zooms)
glimpse_images.append(zooms)
return zooms
vocab_size = 50000
embedding_dim = 8
batch_size = 2
state_size = 11
input_size = 8
# Starting interactive Session
sess = tf.InteractiveSession()
# Placeholders
# can add assert statements to ensure shared None dimensions are equal (batch_size)
seq_lens_d = tf.placeholder(tf.int32, [None, ], name="seq_lens_d")
seq_lens_q = tf.placeholder(tf.int32, [None, ], name="seq_lens_q")
input_d = tf.placeholder(tf.int32, [None, None], name="input_d")
input_q = tf.placeholder(tf.int32, [None, None], name="input_q")
input_a = tf.placeholder(tf.int32, [None, ], name="input_a")
input_m = tf.placeholder(tf.int32, [None, ], name="input_m")
n_steps = tf.placeholder(tf.int32)
# toy feed dict
feed = {
n_steps: 5,
seq_lens_d: [5,4],
seq_lens_q: [2,3],
input_d: [[20,30,40,50,60],[2,3,4,5,0]], # document
input_q: [[2,3,0],[1,2,3]], # query
input_a: [1,0], # answer
input_m: [2,3], # number of entities
}
mask_d = tf.cast(tf.sequence_mask(seq_lens_d), tf.int32)
mask_q = tf.cast(tf.sequence_mask(seq_lens_q), tf.int32)
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Modeling
graph = tf.Graph()
with graph.as_default():
tf_X = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_y = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_rel_label = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_b_label = tf.placeholder(tf.int64, shape=[None, seq_max_len])
tf_word_embeddings = tf.placeholder(tf.float32, shape=[vocabulary_size, embedding_size])
tf_X_binary_mask = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_weight_mask = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_weight_mask_ss = tf.placeholder(tf.float32, shape=[None, seq_max_len])
tf_seq_len = tf.placeholder(tf.int64, shape=[None, ])
keep_prob = tf.placeholder(tf.float32)
ln_w = tf.Variable(tf.truncated_normal([embedding_size, nb_linear_inside], stddev=1.0 / math.sqrt(embedding_size)))
ln_b = tf.Variable(tf.zeros([nb_linear_inside]))
sent_w = tf.Variable(tf.truncated_normal([nb_lstm_inside, 8],
stddev=1.0 / math.sqrt(2 * nb_lstm_inside)))
sent_b = tf.Variable(tf.zeros([8]))
rel_w = tf.Variable(tf.truncated_normal([nb_lstm_inside, nb_label],
stddev=1.0 / math.sqrt(2 * nb_lstm_inside)))
rel_b = tf.Variable(tf.zeros([nb_label]))
def denselayer(x, w, b, weight_scale=0., activation=''):
x, sx = quantize(x)
x = tf.cast(x, dtype=tf.float32)
x = tf.matmul(x, w)
s = sx * weight_scale
x = x * s
x = tf.add(x, b)
if activation == "relu":
x = tf.nn.relu(x)
return x
size_in_transitions=params['replay_buffer_size'],
time_horizon=params['n_rollout_steps'])
ddpg = DDPG(env_spec=env.spec,
policy=policy,
qf=qf,
replay_buffer=replay_buffer,
steps_per_epoch=params['steps_per_epoch'],
policy_lr=params['policy_lr'],
qf_lr=params['qf_lr'],
target_update_tau=params['tau'],
n_train_steps=params['n_train_steps'],
discount=params['discount'],
min_buffer_size=int(1e4),
exploration_strategy=action_noise,
policy_optimizer=tf.train.AdamOptimizer,
qf_optimizer=tf.train.AdamOptimizer)
# Set up logger since we are not using run_experiment
tabular_log_file = osp.join(log_dir, 'progress.csv')
dowel_logger.add_output(dowel.StdOutput())
dowel_logger.add_output(dowel.CsvOutput(tabular_log_file))
dowel_logger.add_output(dowel.TensorBoardOutput(log_dir))
runner.setup(ddpg, env, sampler_args=dict(n_envs=12))
runner.train(n_epochs=params['n_epochs'],
batch_size=params['n_rollout_steps'])
dowel_logger.remove_all()
return tabular_log_file
def build_graph(test=False):
with tf.name_scope('imgholder'): # The placeholder is just a holder and doesn't contains the actual data.
imgholder = tf.placeholder(tf.float32,[None,256,256,3]) # The 3 is color channels
with tf.name_scope('bias_holder'):
bias_holder = tf.placeholder(tf.float32,[None,16,16,4]) # The bias (x,y,w,h) for 16*16 feature maps.
with tf.name_scope('conf_holder'):
conf_holder = tf.placeholder(tf.float32,[None,16,16,1]) # The confidence about 16*16 feature maps.
with tf.name_scope('croppedholder'):
croppedholder = tf.placeholder(tf.float32,[None,32,32,3]) # 256 is the number of feature maps
with tf.name_scope('veri_conf_holder2'):
veri_conf_holder = tf.placeholder(tf.float32, [None,1])
# with tf.name_scope('veri_bias_holder'):
# veri_bias_holder = tf.placeholder(tf.float32, [None,4]) # The veri output numbers,x,y,w,h
with tf.name_scope('mask'):
maskholder = tf.placeholder(tf.float32,[None,16,16,1])
conf, bias,feature_map = RPN(imgholder,test)
veri_conf = verify_net(croppedholder,test)
bias_loss = tf.reduce_sum(tf.reduce_mean(tf.square(bias*conf_holder - bias_holder),axis=0))
conf_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=conf,labels=conf_holder))
# veri_bias_loss = tf.reduce_sum(tf.reduce_mean(tf.square(veri_bias*veri_conf_holder - veri_bias_holder),axis=0))
def try_to_train_identity_layer(
self,
layer: fl.FlowLayer,
flow: fl.FlowData,
feed_dict_fn: Optional[Callable[[], Dict[tf.Tensor, np.ndarray]]] = None,
sess: Optional[tf.Session] = None,
post_init_fn: Optional[Callable[[tf.Session], None]] = None,
):
x, logdet, z = flow
new_flow = layer(flow, forward=True, is_training=True)
x_rec, logdet_rec, z_rec = new_flow
loss = tf.losses.mean_squared_error(x, x_rec)
opt = tf.train.MomentumOptimizer(0.1, 0.9)
opt_op = opt.minimize(loss)
sess = tf.Session() if sess is None else sess
sess.run(tf.global_variables_initializer())
if post_init_fn is not None:
post_init_fn(sess)
losses = []
for i in range(50):
if feed_dict_fn is not None:
feed_dict = feed_dict_fn()
else:
feed_dict = None
loss_np, _ = sess.run([loss, opt_op], feed_dict=feed_dict)
losses.append(loss_np)
self.assertGreater(losses[0], losses[-1])
""" param """
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset', dest='dataset', default='market2duke', help='which dataset to use')
parser.add_argument('--crop_size', dest='crop_size', type=int, default=256, help='then crop to this size')
args = parser.parse_args()
dataset = args.dataset
crop_size = args.crop_size
""" run """
with tf.Session() as sess:
a_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
b_real = tf.placeholder(tf.float32, shape=[None, crop_size, crop_size, 3])
a2b = models.generator(a_real, 'a2b')
b2a = models.generator(b_real, 'b2a')
b2a2b = models.generator(b2a, 'a2b', reuse=True)
a2b2a = models.generator(a2b, 'b2a', reuse=True)
#--retore--#
saver = tf.train.Saver()
ckpt_path = utils.load_checkpoint('./checkpoints/' + dataset + '_spgan', sess, saver)
saver.restore(sess, ckpt_path)
if ckpt_path is None:
raise Exception('No checkpoint!')
else:
print('Copy variables from % s' % ckpt_path)
structure_ss = tf.multiply(structure_ss, tf.expand_dims(tf_X_binary_mask, 2))
structure_rel = tf.split(axis=0, num_or_size_splits=seq_max_len, value=structure_rel)
# Change back dimension to [batch_size, n_step, n_input]
structure_rel = tf.stack(structure_rel)
structure_rel = tf.transpose(structure_rel, [1, 0, 2])
structure_rel = tf.multiply(structure_rel, tf.expand_dims(tf_X_binary_mask, 2))
structure_b = tf.split(axis=0, num_or_size_splits=seq_max_len, value=structure_b)
# Change back dimension to [batch_size, n_step, n_input]
structure_b = tf.stack(structure_b)
structure_b = tf.transpose(structure_b, [1, 0, 2])
structure_b = tf.multiply(structure_b, tf.expand_dims(tf_X_binary_mask, 2))
cross_entropy_ss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=structure_ss, labels=y_labels))
cross_entropy_rel = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=structure_rel, labels=rel_label))
cross_entropy_b = tf.reduce_mean(tf.multiply(tf.nn.softmax_cross_entropy_with_logits(logits=structure_b, labels=b_label), tf_weight_mask))
regularization = WEIGHT_DECAY * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name))
prediction_ss = tf.argmax(tf.nn.softmax(structure_ss), 2)
correct_prediction_ss = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_ss, tf_y), tf.float32), tf_X_binary_mask))
prediction_rel = tf.argmax(tf.nn.softmax(structure_rel), 2)
correct_prediction_rel = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_rel, tf_rel_label), tf.float32), tf_X_binary_mask))
prediction_b = tf.argmax(tf.nn.softmax(structure_b), 2)
correct_prediction_b = tf.reduce_sum(tf.multiply(tf.cast(tf.equal(prediction_b, tf_b_label), tf.float32), tf_X_binary_mask))
optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy_ss + cross_entropy_rel + cross_entropy_b + regularization)
saver = tf.train.Saver()
else:
seq_length_out = config.test_output_window
# Inputs
enc_in = tf.transpose(input, [1, 0, 2])
dec_in = tf.transpose(dec_in, [1, 0, 2])
enc_in = tf.reshape(enc_in, [-1, config.input_size])
dec_in = tf.reshape(dec_in, [-1, config.input_size])
enc_in = tf.split(enc_in, seq_length_in-1, axis=0)
dec_in = tf.split(dec_in, seq_length_out, axis=0)
if config.model == 'ERD':
# Encoder
fc = [tf.layers.dense(enc_in[i], 500,activation= tf.nn.relu,reuse=tf.AUTO_REUSE, name="fc") for i in range(config.input_window_size-1)]
config.hidden_size = 1000
hidden_size = [config.hidden_size, config.hidden_size]
number_of_layers = len(hidden_size)
def lstm_cell(size):
cell = tf.contrib.rnn.LSTMCell(size)
cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=config.keep_prob)
return cell
enc_cells = [lstm_cell(hidden_size[i]) for i in range(number_of_layers)]
enc_cell = tf.contrib.rnn.MultiRNNCell(enc_cells)
output, final_state = tf.contrib.rnn.static_rnn(enc_cell, fc, dtype=tf.float32)
enc_state = [(final_state[i][0], final_state[i][1]) for i in range(number_of_layers)]
# Decoder
dec_cell = [tf.nn.rnn_cell.LSTMCell(hidden_size[i]) for i in range(number_of_layers)]