Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "tensorboard in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'tensorboard' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

ON Tensors.rowid = T1.tensor_rowid
                WHERE
                  series = (
                    SELECT tag_id
                    FROM Runs
                    CROSS JOIN Tags USING (run_id)
                    WHERE Runs.run_name = :run AND Tags.tag_name = :tag)
                  AND step IS NOT NULL
                  AND dtype = :dtype
                  /* Should be n-vector, n >= 3: [width, height, samples...] */
                  AND (NOT INSTR(shape, ',') AND CAST (shape AS INT) >= 3)
                  AND T0.idx = 0
                  AND T1.idx = 1
                ORDER BY step
                """,
                {"run": run, "tag": tag, "dtype": tf.string.as_datatype_enum},
            )
            return [
                {
                    "wall_time": computed_time,
                    "step": step,
                    "width": width,
                    "height": height,
                    "query": self._query_for_individual_image(
                        run, tag, sample, index
                    ),
                }
                for index, (computed_time, step, width, height) in enumerate(
                    cursor
                )
            ]
        response = []
model.cuda(args.gpu)
    if args.optimizer == 'adam':
        optimizer_class = optim.Adam
    elif args.optimizer == 'adagrad':
        optimizer_class = optim.Adagrad
    elif args.optimizer == 'adadelta':
        optimizer_class = optim.Adadelta
    elif args.optimizer == 'SGD':
        optimizer_class = optim.SGD
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = optimizer_class(params=params, lr=args.lr, weight_decay=args.l2reg)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=10, verbose=True)
    criterion = nn.CrossEntropyLoss()
    trpack = [model, params, criterion, optimizer]

    train_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
    valid_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
    tsw, vsw = train_summary_writer, valid_summary_writer

    num_train_batches = data.train_size // data.batch_size 
    logging.info(f'num_train_batches: {num_train_batches}')
    validate_every = num_train_batches // 10
    best_vaild_accuacy = 0
    iter_count = 0
    tic = time.time()

    for epoch_num in range(args.max_epoch):
        for batch_iter, train_batch in enumerate(data.train_minibatch_generator()):
            progress = epoch_num + batch_iter/num_train_batches
            iter_count += 1
if args.gpu > -1:
        logging.info(f'Using GPU {args.gpu}')
        model.cuda(args.gpu)
    if args.optimizer == 'adam':
        optimizer_class = optim.Adam
    elif args.optimizer == 'adagrad':
        optimizer_class = optim.Adagrad
    elif args.optimizer == 'adadelta':
        optimizer_class = optim.Adadelta
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
    criterion = nn.CrossEntropyLoss()
    trpack = [model, params, criterion, optimizer]

    train_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
    valid_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
    tsw, vsw = train_summary_writer, valid_summary_writer

    num_train_batches = len(train_loader)
    logging.info(f'num_train_batches: {num_train_batches}')
    validate_every = num_train_batches // 10
    best_vaild_accuacy = 0
    iter_count = 0
    tic = time.time()

    for batch_iter, train_batch in enumerate(train_loader):
        progress = train_loader.epoch
        if progress > args.max_epoch:
            break
model.cuda(args.gpu)
    if args.optimizer == 'adam':
        optimizer_class = optim.Adam
    elif args.optimizer == 'adagrad':
        optimizer_class = optim.Adagrad
    elif args.optimizer == 'adadelta':
        optimizer_class = optim.Adadelta
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
    criterion = nn.CrossEntropyLoss()
    trpack = [model, params, criterion, optimizer]

    train_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
    valid_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
    tsw, vsw = train_summary_writer, valid_summary_writer

    num_train_batches = len(train_loader)
    logging.info(f'num_train_batches: {num_train_batches}')
    validate_every = num_train_batches // 10
    best_vaild_accuacy = 0
    iter_count = 0
    tic = time.time()

    for batch_iter, train_batch in enumerate(train_loader):
        progress = train_loader.epoch
        if progress > args.max_epoch:
            break
        iter_count += 1
        ################################# train iteration ####################################
self.mock_debugger_data_server = tf.compat.v1.test.mock.Mock(
            debugger_server_lib.DebuggerDataServer
        )
        self.mock_debugger_data_server_class = tf.compat.v1.test.mock.Mock(
            debugger_server_lib.DebuggerDataServer,
            return_value=self.mock_debugger_data_server,
        )

        tf.compat.v1.test.mock.patch.object(
            debugger_server_lib,
            "DebuggerDataServer",
            self.mock_debugger_data_server_class,
        ).start()

        self.context = base_plugin.TBContext(
            logdir=self.log_dir, multiplexer=multiplexer
        )
        self.plugin = debugger_plugin.DebuggerPlugin(self.context)
        self.plugin.listen(self.debugger_data_server_grpc_port)
        wsgi_app = application.TensorBoardWSGI([self.plugin])
        self.server = werkzeug_test.Client(wsgi_app, wrappers.BaseResponse)

        # The debugger data server should be started at the correct port.
        self.mock_debugger_data_server_class.assert_called_once_with(
            self.debugger_data_server_grpc_port, self.log_dir
        )

        mock_debugger_data_server = self.mock_debugger_data_server
        start = (
            mock_debugger_data_server.start_the_debugger_data_receiving_server
        )
ckpt = tf.train.Checkpoint(embeddings=embeddings)
checkpoint_file = output_dir + "/embeddings.ckpt"
ckpt.save(checkpoint_file)

reader = tf.train.load_checkpoint(output_dir)
variable_shape_map = reader.get_variable_to_shape_map()
key_to_use = ""
for key in variable_shape_map:
    if "embeddings" in key:
        key_to_use = key

config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = key_to_use

projector.visualize_embeddings(output_dir, config)

#%% Evaluate model
scores = model.evaluate(X_test, y_test, verbose=1)
print(f"Accuracy: {scores[1]:.2%}")

#%% Train with binary crossentropy and gram matrix
accuracies = []
for i in range(1, 21):
    kernel = Lambda(lambda inputs: tf.reduce_sum(inputs[0] * inputs[1], axis=1))
    model = Sequential([BasicCNN((32, 32, 3), i), GramMatrix(kernel)])
    model.summary()
    model.compile(
        optimizer="adam", loss=BinaryCrossentropy(), metrics=[class_consistency_loss, min_eigenvalue],
    )
    model.fit(X_train, y_train, validation_split=0.2, epochs=20, batch_size=32)
Args:
      logdir: A log directory that contains event files.
      event_file: Or, a particular event file path.
      tag: An optional tag name to query for.

    Returns:
      A list of InspectionUnit objects.
    """
    if logdir:
        subdirs = io_wrapper.GetLogdirSubdirectories(logdir)
        inspection_units = []
        for subdir in subdirs:
            generator = itertools.chain(
                *[
                    generator_from_event_file(os.path.join(subdir, f))
                    for f in tf.io.gfile.listdir(subdir)
                    if io_wrapper.IsTensorFlowEventsFile(
                        os.path.join(subdir, f)
                    )
                ]
            )
            inspection_units.append(
                InspectionUnit(
                    name=subdir,
                    generator=generator,
                    field_to_obs=get_field_to_observations_map(generator, tag),
                )
            )
        if inspection_units:
            print(
                "Found event files in:\n{}\n".format(
                    "\n".join([u.name for u in inspection_units])
def train(args):
    experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
                       f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
                       f'_d{args.dropout_prob}')
    save_dir = os.path.join(args.save_root_dir, experiment_name)
    train_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(save_dir, 'log', 'train'))
    valid_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(save_dir, 'log', 'valid'))

    lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]

    logging.info('Loading data...')
    text_field = data.Field(lower=True, include_lengths=True,
                            batch_first=False)
    label_field = data.Field(sequential=False)
    if not os.path.exists(args.data_dir):
        os.makedirs(args.data_dir)
    dataset_splits = datasets.SNLI.splits(
        text_field=text_field, label_field=label_field, root=args.data_dir)
    text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
    label_field.build_vocab(*dataset_splits)
    train_loader, valid_loader, _ = data.BucketIterator.splits(
        datasets=dataset_splits, batch_size=args.batch_size, device=args.gpu)
def train(args):
    experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
                       f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
                       f'_d{args.dropout_prob}')
    save_dir = os.path.join(args.save_root_dir, experiment_name)
    train_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(save_dir, 'log', 'train'))
    valid_summary_writer = tensorboard.FileWriter(
        logdir=os.path.join(save_dir, 'log', 'valid'))

    lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]

    logging.info('Loading data...')
    text_field = data.Field(lower=True, include_lengths=True,
                            batch_first=False)
    label_field = data.Field(sequential=False)
    if not os.path.exists(args.data_dir):
        os.makedirs(args.data_dir)
    dataset_splits = datasets.SNLI.splits(
        text_field=text_field, label_field=label_field, root=args.data_dir)
    text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
    label_field.build_vocab(*dataset_splits)
Returns:
          A werkzeug.Response application.
        """
        tag = request.args.get("tag")
        run = request.args.get("run")
        sample = int(request.args.get("sample", 0))

        events = self._multiplexer.Tensors(run, tag)
        try:
            response = self._audio_response_for_run(events, run, tag, sample)
        except KeyError:
            return http_util.Respond(
                request, "Invalid run or tag", "text/plain", code=400
            )
        return http_util.Respond(request, response, "application/json")

Is your System Free of Underlying Vulnerabilities?
Find Out Now