Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'tensorboard' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
ON Tensors.rowid = T1.tensor_rowid
WHERE
series = (
SELECT tag_id
FROM Runs
CROSS JOIN Tags USING (run_id)
WHERE Runs.run_name = :run AND Tags.tag_name = :tag)
AND step IS NOT NULL
AND dtype = :dtype
/* Should be n-vector, n >= 3: [width, height, samples...] */
AND (NOT INSTR(shape, ',') AND CAST (shape AS INT) >= 3)
AND T0.idx = 0
AND T1.idx = 1
ORDER BY step
""",
{"run": run, "tag": tag, "dtype": tf.string.as_datatype_enum},
)
return [
{
"wall_time": computed_time,
"step": step,
"width": width,
"height": height,
"query": self._query_for_individual_image(
run, tag, sample, index
),
}
for index, (computed_time, step, width, height) in enumerate(
cursor
)
]
response = []
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
elif args.optimizer == 'SGD':
optimizer_class = optim.SGD
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, lr=args.lr, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=10, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = data.train_size // data.batch_size
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for epoch_num in range(args.max_epoch):
for batch_iter, train_batch in enumerate(data.train_minibatch_generator()):
progress = epoch_num + batch_iter/num_train_batches
iter_count += 1
if args.gpu > -1:
logging.info(f'Using GPU {args.gpu}')
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = len(train_loader)
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for batch_iter, train_batch in enumerate(train_loader):
progress = train_loader.epoch
if progress > args.max_epoch:
break
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = len(train_loader)
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for batch_iter, train_batch in enumerate(train_loader):
progress = train_loader.epoch
if progress > args.max_epoch:
break
iter_count += 1
################################# train iteration ####################################
self.mock_debugger_data_server = tf.compat.v1.test.mock.Mock(
debugger_server_lib.DebuggerDataServer
)
self.mock_debugger_data_server_class = tf.compat.v1.test.mock.Mock(
debugger_server_lib.DebuggerDataServer,
return_value=self.mock_debugger_data_server,
)
tf.compat.v1.test.mock.patch.object(
debugger_server_lib,
"DebuggerDataServer",
self.mock_debugger_data_server_class,
).start()
self.context = base_plugin.TBContext(
logdir=self.log_dir, multiplexer=multiplexer
)
self.plugin = debugger_plugin.DebuggerPlugin(self.context)
self.plugin.listen(self.debugger_data_server_grpc_port)
wsgi_app = application.TensorBoardWSGI([self.plugin])
self.server = werkzeug_test.Client(wsgi_app, wrappers.BaseResponse)
# The debugger data server should be started at the correct port.
self.mock_debugger_data_server_class.assert_called_once_with(
self.debugger_data_server_grpc_port, self.log_dir
)
mock_debugger_data_server = self.mock_debugger_data_server
start = (
mock_debugger_data_server.start_the_debugger_data_receiving_server
)
ckpt = tf.train.Checkpoint(embeddings=embeddings)
checkpoint_file = output_dir + "/embeddings.ckpt"
ckpt.save(checkpoint_file)
reader = tf.train.load_checkpoint(output_dir)
variable_shape_map = reader.get_variable_to_shape_map()
key_to_use = ""
for key in variable_shape_map:
if "embeddings" in key:
key_to_use = key
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = key_to_use
projector.visualize_embeddings(output_dir, config)
#%% Evaluate model
scores = model.evaluate(X_test, y_test, verbose=1)
print(f"Accuracy: {scores[1]:.2%}")
#%% Train with binary crossentropy and gram matrix
accuracies = []
for i in range(1, 21):
kernel = Lambda(lambda inputs: tf.reduce_sum(inputs[0] * inputs[1], axis=1))
model = Sequential([BasicCNN((32, 32, 3), i), GramMatrix(kernel)])
model.summary()
model.compile(
optimizer="adam", loss=BinaryCrossentropy(), metrics=[class_consistency_loss, min_eigenvalue],
)
model.fit(X_train, y_train, validation_split=0.2, epochs=20, batch_size=32)
Args:
logdir: A log directory that contains event files.
event_file: Or, a particular event file path.
tag: An optional tag name to query for.
Returns:
A list of InspectionUnit objects.
"""
if logdir:
subdirs = io_wrapper.GetLogdirSubdirectories(logdir)
inspection_units = []
for subdir in subdirs:
generator = itertools.chain(
*[
generator_from_event_file(os.path.join(subdir, f))
for f in tf.io.gfile.listdir(subdir)
if io_wrapper.IsTensorFlowEventsFile(
os.path.join(subdir, f)
)
]
)
inspection_units.append(
InspectionUnit(
name=subdir,
generator=generator,
field_to_obs=get_field_to_observations_map(generator, tag),
)
)
if inspection_units:
print(
"Found event files in:\n{}\n".format(
"\n".join([u.name for u in inspection_units])
def train(args):
experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
f'_d{args.dropout_prob}')
save_dir = os.path.join(args.save_root_dir, experiment_name)
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'train'))
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'valid'))
lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]
logging.info('Loading data...')
text_field = data.Field(lower=True, include_lengths=True,
batch_first=False)
label_field = data.Field(sequential=False)
if not os.path.exists(args.data_dir):
os.makedirs(args.data_dir)
dataset_splits = datasets.SNLI.splits(
text_field=text_field, label_field=label_field, root=args.data_dir)
text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
label_field.build_vocab(*dataset_splits)
train_loader, valid_loader, _ = data.BucketIterator.splits(
datasets=dataset_splits, batch_size=args.batch_size, device=args.gpu)
def train(args):
experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
f'_d{args.dropout_prob}')
save_dir = os.path.join(args.save_root_dir, experiment_name)
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'train'))
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'valid'))
lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]
logging.info('Loading data...')
text_field = data.Field(lower=True, include_lengths=True,
batch_first=False)
label_field = data.Field(sequential=False)
if not os.path.exists(args.data_dir):
os.makedirs(args.data_dir)
dataset_splits = datasets.SNLI.splits(
text_field=text_field, label_field=label_field, root=args.data_dir)
text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
label_field.build_vocab(*dataset_splits)
Returns:
A werkzeug.Response application.
"""
tag = request.args.get("tag")
run = request.args.get("run")
sample = int(request.args.get("sample", 0))
events = self._multiplexer.Tensors(run, tag)
try:
response = self._audio_response_for_run(events, run, tag, sample)
except KeyError:
return http_util.Respond(
request, "Invalid run or tag", "text/plain", code=400
)
return http_util.Respond(request, response, "application/json")