Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "scikit-learn in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'scikit-learn' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None,
             intercept_init=None, sample_weight=None):
        if hasattr(self, "classes_"):
            self.classes_ = None

        X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C")
        n_samples, n_features = X.shape

        # labels can be encoded as float, int, or string literals
        # np.unique sorts in asc order; largest class id is positive class
        classes = np.unique(y)

        if self.warm_start and self.coef_ is not None:
            if coef_init is None:
                coef_init = self.coef_
            if intercept_init is None:
                intercept_init = self.intercept_
        else:
            self.coef_ = None
            self.intercept_ = None

        if self.average > 0:
def _partial_fit(self, X, y, alpha, C, loss, learning_rate,
                     n_iter, sample_weight,
                     coef_init, intercept_init):
        X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64)
        y = astype(y, np.float64, copy=False)

        n_samples, n_features = X.shape

        self._validate_params()

        # Allocate datastructures from input arguments
        sample_weight = self._validate_sample_weight(sample_weight, n_samples)

        if self.coef_ is None:
            self._allocate_parameter_mem(1, n_features,
                                         coef_init, intercept_init)
        elif n_features != self.coef_.shape[-1]:
            raise ValueError("Number of features %d does not match previous "
                             "data %d." % (n_features, self.coef_.shape[-1]))
        if self.average > 0 and self.average_coef_ is None:
def _partial_fit(self, X, y, alpha, C,
                     loss, learning_rate, n_iter,
                     classes, sample_weight,
                     coef_init, intercept_init):
        X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C")

        n_samples, n_features = X.shape

        self._validate_params()
        _check_partial_fit_first_call(self, classes)

        n_classes = self.classes_.shape[0]

        # Allocate datastructures from input arguments
        self._expanded_class_weight = compute_class_weight(self.class_weight,
                                                           self.classes_, y)
        sample_weight = self._validate_sample_weight(sample_weight, n_samples)

        if self.coef_ is None or coef_init is not None:
            self._allocate_parameter_mem(n_classes, n_features,
                                         coef_init, intercept_init)
def _partial_fit(self, X, y, alpha, C,
                     loss, learning_rate, n_iter,
                     classes, sample_weight,
                     coef_init, intercept_init):
        X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C")

        n_samples, n_features = X.shape

        self._validate_params()
        _check_partial_fit_first_call(self, classes)

        n_classes = self.classes_.shape[0]

        # Allocate datastructures from input arguments
        self._expanded_class_weight = compute_class_weight(self.class_weight,
                                                           self.classes_, y)
        sample_weight = self._validate_sample_weight(sample_weight, n_samples)

        if self.coef_ is None or coef_init is not None:
            self._allocate_parameter_mem(n_classes, n_features,
                                         coef_init, intercept_init)
        elif n_features != self.coef_.shape[-1]:
            raise ValueError("Number of features %d does not match previous "
                             "data %d." % (n_features, self.coef_.shape[-1]))

        self.loss_function = self._get_loss_function(loss)
        if self.t_ is None:
            self.t_ = 1.0

        # delegate to concrete training procedure
        if n_classes > 2:
def _partial_fit(self, X, y, alpha, C, loss, learning_rate,
                     n_iter, sample_weight,
                     coef_init, intercept_init):
        X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64)
        y = astype(y, np.float64, copy=False)

        n_samples, n_features = X.shape

        self._validate_params()

        # Allocate datastructures from input arguments
        sample_weight = self._validate_sample_weight(sample_weight, n_samples)

        if self.coef_ is None:
            self._allocate_parameter_mem(1, n_features,
                                         coef_init, intercept_init)
        elif n_features != self.coef_.shape[-1]:
            raise ValueError("Number of features %d does not match previous "
                             "data %d." % (n_features, self.coef_.shape[-1]))
        if self.average > 0 and self.average_coef_ is None:
            self.average_coef_ = np.zeros(n_features,
def _partial_fit(self, X, y, alpha, C,
                     loss, learning_rate, n_iter,
                     classes, sample_weight,
                     coef_init, intercept_init):
        X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C")

        n_samples, n_features = X.shape

        self._validate_params()
        _check_partial_fit_first_call(self, classes)

        n_classes = self.classes_.shape[0]

        # Allocate datastructures from input arguments
        self._expanded_class_weight = compute_class_weight(self.class_weight,
                                                           self.classes_, y)
        sample_weight = self._validate_sample_weight(sample_weight, n_samples)

        if self.coef_ is None or coef_init is not None:
            self._allocate_parameter_mem(n_classes, n_features,
                                         coef_init, intercept_init)
        elif n_features != self.coef_.shape[-1]:
            raise ValueError("Number of features %d does not match previous "
                             "data %d." % (n_features, self.coef_.shape[-1]))

        self.loss_function = self._get_loss_function(loss)
Weights applied to individual samples.
            If not provided, uniform weights are assumed. These weights will
            be multiplied with class_weight (passed through the
            constructor) if class_weight is specified

        Returns
        -------
        self : returns an instance of self.
        """
        return self._fit(X, y, alpha=self.alpha, C=1.0,
                         loss=self.loss, learning_rate=self.learning_rate,
                         coef_init=coef_init, intercept_init=intercept_init,
                         sample_weight=sample_weight)


class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin):
    """Linear classifiers (SVM, logistic regression, a.o.) with SGD training.

    This estimator implements regularized linear models with stochastic
    gradient descent (SGD) learning: the gradient of the loss is estimated
    each sample at a time and the model is updated along the way with a
    decreasing strength schedule (aka learning rate). SGD allows minibatch
    (online/out-of-core) learning, see the partial_fit method.
    For best results using the default learning rate schedule, the data should
    have zero mean and unit variance.

    This implementation works with data represented as dense or sparse arrays
    of floating point values for the features. The model it fits can be
    controlled with the loss parameter; by default, it fits a linear support
    vector machine (SVM).

    The regularizer is a penalty added to the loss function that shrinks model
self.average_intercept_ = np.atleast_1d(self.average_intercept_)
            self.standard_intercept_ = np.atleast_1d(self.standard_intercept_)
            self.t_ += n_iter * X.shape[0]

            if self.average <= self.t_ - 1.0:
                self.coef_ = self.average_coef_
                self.intercept_ = self.average_intercept_
            else:
                self.coef_ = self.standard_coef_
                self.intercept_ = self.standard_intercept_

        else:
            if self.n_jobs > 1:
                sgd_result = \
                    Parallel(n_jobs=self.n_jobs, backend='threading')(
                    delayed(plain_sgd)(self.coef_,
                              self.intercept_[0],
                              loss_function,
                              penalty_type,
                              alpha, C,
                              self.l1_ratio,
                              dataset,
                              n_iter/self.n_jobs,
                              int(self.fit_intercept),
                              int(self.verbose),
                              int(self.shuffle),
                              seed,
                              1.0, 1.0,
                              learning_rate_type,
                              self.eta0, self.power_t, self.t_,
                              intercept_decay) for _ in range(self.n_jobs))
def _fit_multiclass(self, X, y, alpha, C, learning_rate,
                        sample_weight, n_iter):
        """Fit a multi-class classifier by combining binary classifiers

        Each binary classifier predicts one class versus all others. This
        strategy is called OVA: One Versus All.
        """
        # Use joblib to fit OvA in parallel.
        result = Parallel(n_jobs=self.n_jobs, backend="threading",
                          verbose=self.verbose)(
            delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate,
                                n_iter, self._expanded_class_weight[i], 1.,
                                sample_weight)
            for i in range(len(self.classes_)))

        for i, (_, intercept) in enumerate(result):
            self.intercept_[i] = intercept

        self.t_ += n_iter * X.shape[0]

        if self.average > 0:
            if self.average <= self.t_ - 1.0:
                self.coef_ = self.average_coef_
                self.intercept_ = self.average_intercept_
            else:
self.average_intercept_ = np.atleast_1d(self.average_intercept_)
            self.standard_intercept_ = np.atleast_1d(self.standard_intercept_)
            self.t_ += n_iter * X.shape[0]

            if self.average <= self.t_ - 1.0:
                self.coef_ = self.average_coef_
                self.intercept_ = self.average_intercept_
            else:
                self.coef_ = self.standard_coef_
                self.intercept_ = self.standard_intercept_

        else:
            if self.n_jobs > 1:
                sgd_result = \
                    Parallel(n_jobs=self.n_jobs, backend='threading')(
                    delayed(plain_sgd)(self.coef_,
                              self.intercept_[0],
                              loss_function,
                              penalty_type,
                              alpha, C,
                              self.l1_ratio,
                              dataset,
                              n_iter/self.n_jobs,
                              int(self.fit_intercept),
                              int(self.verbose),
                              int(self.shuffle),
                              seed,
                              1.0, 1.0,
                              learning_rate_type,
                              self.eta0, self.power_t, self.t_,
                              intercept_decay) for _ in range(self.n_jobs))

Is your System Free of Underlying Vulnerabilities?
Find Out Now