Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "networkx in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'networkx' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def create_graph_1(is_directed=False, return_nx=False):
    g = nx.DiGraph() if is_directed else nx.Graph()
    g.add_nodes_from([0, 1, 2, 3], label="movie")
    g.add_nodes_from([4, 5], label="user")
    g.add_edges_from([(4, 0), (4, 1), (5, 1), (4, 2), (5, 3)], label="rating")
    if return_nx:
        return nx.MultiDiGraph(g) if is_directed else nx.MultiGraph(g)
    return StellarDiGraph(g) if is_directed else StellarGraph(g)
def fetch_balance_in(self, target: str, fee: bool=False) -> float:
        """
        Return the value of current portfolio all in target asset. The transfer rate is computed from the most
        profitable way possible. If there is no possible way to transfer an asset to the target one, an exception will
        be raised.

        Args:
            target: Name of the target asset
            fee: If exchange fee is considered when computing the portfolio value. Defaults to False.

        Returns:
            Portfolio value
        """

        di_graph = nx.DiGraph()
        multiplier = 1.0 - self._fee_rate / 100.0 if fee else 1.0

        for symbol in self._symbols:
            quote_name = self._quotes.get_ticker(symbol).quote_name
            base_name = self._quotes.get_ticker(symbol).base_name

            di_graph.add_edge(quote_name, base_name,
                              weight=-math.log(multiplier * self.__get_price(symbol, self._sell_price)))
            di_graph.add_edge(base_name, quote_name,
                              weight=math.log(self.__get_price(symbol, self._buy_price) / multiplier))

        balance = 0
        for asset in self._total_balance:
            if self._total_balance[asset]:
                if asset == target:
                    balance += self._total_balance[asset]
def test_networkx_multidigraph_edge_attr(self):
        print('\n---------- Multi-Digraph Edge Att Test Start -----------\n')
        g = nx.MultiDiGraph()
        g.add_node(1)
        g.add_node(2)
        g.add_node(3)
        g.add_edge(1, 2)
        g.add_edge(1, 2, attr_dict={'foo': 'bar'})
        g.add_edge(1, 2)
        g.add_edge(1, 3)
        edges = g.edges(data=True, keys=True)
        for edge in edges:
            print(edge)

        cyjs = util.from_networkx(g)

        print(json.dumps(cyjs, indent=4))

        edge = cyjs['elements']['edges'][0]
def has_path(G, source, target):
    """Return *True* if *G* has a path from *source* to *target*.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path

    target : node
       Ending node for path
    """
    try:
        sp = nx.shortest_path(G, source, target)
    except nx.NetworkXNoPath:
        return False
    return True
def edge(n1, n2, w):
            if w in seen_w:
                raise Exception("Duplicate edge weights in graph. For a unique MST, all edge weights have to be uniqe as well.")
            seen_w.update({ w })
            return (n1, n2, {'weight':w})

        edge_list = list()

        with open(file, 'r') as f:
            edge_list = list( edge(ed.split()[0], ed.split()[1], int(ed.split()[2])) 
                for ed in 
                (e.strip() for e in f.readlines() if e.strip() != "") 
                if len(ed.split()) == 3 )

            G = nx.Graph()
            G.add_edges_from(edge_list)

            self.graph = G
            return G
tree=IntervalTree()
    
    for fasta in fastas:
        sample=os.path.basename(fasta)
        idx.addsample(sample)
        for i,t in enumerate(fasta_reader(fasta)):
            name,seq=t
            f,t=idx.addsequence(seq)
            tree[f:t]=sample
            if i==1:
                logging.error("Can't handle multi-fasta input. Use single fasta file per sequence.")
                sys.exit(1)
    
    idx.construct()
    
    G=nx.DiGraph()
    G.graph['paths']=idx.samples
    G.graph['path2id']=dict()
    G.graph['id2path']=dict()

    for sid,sample in enumerate(G.graph['paths']):
        G.graph['path2id'][sample]=sid
        G.graph['id2path'][sid]=sample
    
    k=len(idx.samples)
    
    T=idx.T
    
    istart=tuple([-1]+[sep for sep in idx.nsep]) #no matches possible at these loci
    iend=tuple([sep for sep in idx.nsep]+[idx.n-1]) #loci of sentinels, also no matches possible
    startcoords=tuple([0]+[sep+1 for sep in idx.nsep])
    G.add_node(istart,l=0)
if not column[g2]: continue
                
                consistency_graph.add_node( g1 )
                consistency_graph.add_node( g2 )                                        

                if column[g1] != column[g2]:
                    if options.loglevel >= 6:        
                        options.stdlog.write("# column %i: inconsistency: %s - %i <---> %s - %i\n" % (c, identifiers[g1],column[g1],identifiers[g2],column[g2]))

                    ic.add( (identifiers[g1],) + tuple(identifiers[g1].split(options.separator)) )
                    ic.add( (identifiers[g2],) + tuple(identifiers[g2].split(options.separator)) )
                    is_inconsistent = True
                else:
                    consistency_graph.add_edge( g1, g2 )

            components = networkx.connected_components( consistency_graph )

            if options.loglevel >= 6:
                if is_inconsistent:
                    options.stdlog.write("# column %i: inconsistency for gene %s - %s\n" % (c, str(gene), str(components)))
            
            component_sizes.append( len(components) )

            
        # count maximum transripts per gene
        if not ic: continue

        max_counts = max( component_sizes )
        inconsistent_columns.append( (c, max_counts, ic) )

    if options.loglevel >= 1:
        options.stdlog.write("# found %i inconsistent columns.\n" % len(inconsistent_columns) )
# Draw nodes
    options = {
        'marker': 'o',
        's': 200,
        'c': [0.85, 0.85, 1],
        'facecolor': '0.5',
        'lw': 0,
        }
    ax = plt.gca()
    nodelist = list(g)
    xy = numpy.asarray([pos[v] for v in nodelist])
    node_collection = ax.scatter(xy[:, 0], xy[:, 1], **options)
    node_collection.set_zorder(2)
    # Draw edges
    networkx.draw_networkx_edges(g, pos, arrows=False, edge_color='0.5')
    # Draw labels
    edge_labels = {(e[0], e[1]): e[2].get('label') for e in g.edges(data=True)}
    networkx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels)
    node_labels = {n[0]: n[1].get('label') for n in g.nodes(data=True)}
    for key, label in node_labels.items():
        if len(label) > 25:
            parts = label.split(' ')
            parts.insert(int(len(parts)/2), '\n')
            label = ' '.join(parts)
            node_labels[key] = label
    networkx.draw_networkx_labels(g, pos, labels=node_labels)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.show()
hamming_avg = float(line[6])

            for neighbor in line[7].rstrip().split(','):
                if len(neighbor) < 1:
                    continue
                fields = neighbor.split('_')
                neighbor_id = int(fields[0])
                left = int(fields[1])
                right = int(fields[2])
                dist = int(fields[3])


                G.add_edge(node_id, neighbor_id, color=colors[dist],weight=(left+right)/5)

            plt.figure(figsize=(30,30))
            nx.draw(G)#, pos, edges=edges, edge_color=colors, width=weights)
            plt.savefig(out_file+"_basic.pdf")

            edges = G.edges()
            colors = [G[u][v]['color'] for u,v in edges]
            weights = [G[u][v]['weight'] for u,v in edges]

            plt.figure(figsize=(30,30))
            pos = nx.spring_layout(G)
            nx.draw(G, pos, edges=edges, edge_color=colors, width=weights, alpha=0.1, node_size=25)
            plt.savefig(out_file+"_spring.pdf")

            plt.figure(figsize=(18,18))
            pos = nx.spectral_layout(G)
            nx.draw(G, pos, edges=edges, edge_color=colors, width=weights)
            plt.savefig(out_file+"_spectral.pdf")
#			#print(G.node[b]['Base'])
#			seq = seq + G.node[b]['Base']
#		#print(seq)
#		path_alternatives.append(seq)

#	#Loop through and check the strings match
#	for path in path_alternatives:
#		if(path == transcripts[key]): print("Found path for: ", key)
		


#Order base in graph
#base_order = nx.topological_sort(G)
#Will crash if there is a cycle, therefore do a try
try:
	base_order = nx.topological_sort(G)
except nx.NetworkXUnfeasible:
	print("CYCLESSSSSS!!!!!!")
	sys.exit()

seq =''
for index in base_order:
	seq = seq + G.node[index]['Base']
print(seq)	

#Save sequence to file
superf = open('Super.fasta','w')
superf.write('>Super\n')
superf.write(seq)
superf.close()

Is your System Free of Underlying Vulnerabilities?
Find Out Now