Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "joblib in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'joblib' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def load_rec():
    return load(join(get_output_dir(), 'benchmark', 'rec.pkl'))


# compute_rec()

exp_dirs = join(get_output_dir(), 'single_exp', '17')
models = []
rec = load_rec()
mask_img = fetch_mask()
masker = MultiNiftiMasker(mask_img=mask_img).fit()

for exp_dir in [exp_dirs]:
    estimator = load(join(exp_dirs, 'estimator.pkl'))
    transformer = load(join(exp_dirs, 'transformer.pkl'))
    for coef, (dataset, sc), (_, lbin) in zip(estimator.coef_, transformer.scs_.items(),
                                      transformer.lbins_.items()):
        print(dataset)
        classes = lbin.classes_
        print(classes)
        coef /= sc.scale_
        coef_rec = coef.dot(rec)
        # coef_rec -= np.mean(coef_rec, axis=0)
        print(join(exp_dirs, 'maps_%s.nii.gz' % dataset))
        imgs = masker.inverse_transform(coef_rec)
        imgs.to_filename(join(exp_dirs, 'maps_%s.nii.gz' % dataset))
        fig, axes = plt.subplots(len(classes) // 4, 4, figsize=(24, len(classes) // 4 * 3))
        axes = axes.ravel()
        for ax, img, this_class in zip(axes, iter_img(imgs), classes):
            this_class = this_class.replace('_', ' ')
            this_class = this_class.replace('&', ' ')
def run(n_jobs=1, n_epochs=10):
    # Exp def
    redundancies = [25]
    global_exp = dict(n_components=100, alpha=1,
                      l1_ratio=0,
                      pen_l1_ratio=.9,
                      learning_rate=0.9,
                      Dx_agg='average',
                      G_agg='average',
                      AB_agg='full')
    ref_batch_size = 200
    exps = [dict(batch_size=int(ref_batch_size),
                 reduction=reduction)
            for reduction in np.linspace(5, 5, 1)]

    mem = Memory(cachedir=expanduser('~/cache'))
    face = misc.face(gray=True)

    # Convert from uint8 representation with values between 0 and 255 to
    # a floating point representation with values between 0 and 1.
    face = face / 255

    height, width = face.shape

    # Distort the right half of the image
    print('Distorting image...')
    distorted = face.copy()
    # distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)

    # Extract all reference patches from the left half of the image
    print('Extracting reference patches...')
    t0 = time()
----------
        X : np.array
            List of datapoints

        Returns
        -------
        n_jobs : int
            Number of jobs
        list of int
            List of number of datapoints per job
        list of int
            List of start values for every job list

        """
        n_datapoints = len(X)
        n_jobs = min(effective_n_jobs(self.n_jobs), n_datapoints)

        n_datapoints_per_job = np.full(
            n_jobs, n_datapoints // n_jobs, dtype=np.int)

        n_datapoints_per_job[:n_datapoints % n_jobs] += 1
        starts = np.cumsum(n_datapoints_per_job)

        return n_jobs, n_datapoints_per_job.tolist(), [0] + starts.tolist()
for i in range (count):
                            result += [ (idx, 'GPU', '%s #%d' % (dev_name,i) , dev_vram) ]

                return result

            if cpu_only:
                if manual:
                    return [ (0, 'CPU', 'CPU', 0 ) ]
                else:
                    return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]

        elif type == 'final':
            return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]

class DeletedFilesSearcherSubprocessor(Subprocessor):
    class Cli(Subprocessor.Cli):
        #override
        def on_initialize(self, client_dict):
            self.debug_paths_stems = client_dict['debug_paths_stems']
            return None

        #override
        def process_data(self, data):
            input_path_stem = Path(data[0]).stem
            return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )

        #override
        def get_data_name (self, data):
            #return string identificator of your data
            return data[0]

    #override
def calculate_potential_3D_parallel(true_csd, ele_xx, ele_yy, ele_zz, 
                                    csd_x, csd_y, csd_z):
    """
    For Mihav's implementation to compute the LFP generated
    """

    xlin = csd_x[:,0,0]
    ylin = csd_y[0,:,0]
    zlin = csd_z[0,0,:]
    xlims = [xlin[0], xlin[-1]]
    ylims = [ylin[0], ylin[-1]]
    zlims = [zlin[0], zlin[-1]]
    sigma = 1.0
    #tic = time.time()
    pots = Parallel(n_jobs=num_cores)(delayed(integrate_3D)(ele_xx[ii],ele_yy[ii],ele_zz[ii],
                                                            xlims, ylims, zlims, true_csd,
                                                            xlin, ylin, zlin,
                                                            csd_x, csd_y, csd_z) for ii in range(len(ele_xx)))
    pots = np.array(pots)
    pots /= 4*np.pi*sigma
    #toc = time.time() - tic
    #print toc, 'Total time taken - parallel, sims '
    return pots
1
pipeline_2 = ResumablePipeline([], cache_folder=tmpdir)
    pipeline_2.name = 'pipeline2'
    pipeline_2.sub_steps_savers = [
        (SOME_STEP_2, []),
        (CHECKPOINT, []),
        (SOME_STEP_3, []),
    ]
    dump(pipeline_2, create_pipeline2_path(tmpdir, True))

    given_saved_some_step(multiply_by=2, name=SOME_STEP_1, path=create_some_step1_path(tmpdir, True))
    given_saved_some_step(multiply_by=4, name=SOME_STEP_2, path=create_some_step2_path(tmpdir, True))
    given_saved_some_step(multiply_by=6, name=SOME_STEP_3, path=create_some_step3_path(tmpdir, True))

    checkpoint = DefaultCheckpoint()
    checkpoint.name = CHECKPOINT
    dump(checkpoint, create_some_checkpoint_path(tmpdir, True))

    p = ResumablePipeline([
        (SOME_STEP_1, MultiplyByN(multiply_by=1)),
        (PIPELINE_2, ResumablePipeline([
            (SOME_STEP_2, MultiplyByN(multiply_by=1)),
            (CHECKPOINT, DefaultCheckpoint()),
            (SOME_STEP_3, MultiplyByN(multiply_by=1))
        ]))
    ], cache_folder=tmpdir)
    p.name = ROOT

    return p
internal_dim=2)
    
    test_policy = EpsilonGreedyPolicy(learning_algo, env.nActions(), rng, 1.)

    # --- Instantiate agent ---
    agent = NeuralAgent(
        env,
        learning_algo,
        parameters.replay_memory_size,
        max(env.inputDimensions()[i][0] for i in range(len(env.inputDimensions()))),
        parameters.batch_size,
        rng,
        test_policy=test_policy)

    # --- Create unique filename for FindBestController ---
    h = hash(vars(parameters), hash_name="sha1")
    fname = "test_" + h
    print("The parameters hash is: {}".format(h))
    print("The parameters are: {}".format(parameters))

    # As for the discount factor and the learning rate, one can update periodically the parameter of the epsilon-greedy
    # policy implemented by the agent. This controllers has a bit more capabilities, as it allows one to choose more
    # precisely when to update epsilon: after every X action, episode or epoch. This parameter can also be reset every
    # episode or epoch (or never, hence the resetEvery='none').
    agent.attach(bc.EpsilonController(
        initial_e=parameters.epsilon_start,
        e_decays=parameters.epsilon_decay,
        e_min=parameters.epsilon_min,
        evaluate_on='action',
        periodicity=1,
        reset_every='none'))
for line in in_map:
            line = line.rstrip()
            line_split = line.split()
            func_map[line_split[0]] += line_split[1].split(",")

    # Get set of all unique functions.
    functions = list(set(in_df['function']))

    chunk_size = int(len(functions) / proc) + 1

    function_chunks = [functions[i:i + chunk_size]
                       for i in range(0, len(functions), chunk_size)]

    # Loop over all functions in parallel and return pandas dataframe for each
    # function with regrouped ids (which will are combined together afterwards).
    raw_new_ids_dfs = Parallel(n_jobs=proc)(delayed(
                                    convert_func_ids)(func_subset,
                                                      in_df,
                                                      func_map)
                                    for func_subset in function_chunks)

    # Combine all returned DFs into a single DF.
    raw_new_ids_combined = pd.concat(raw_new_ids_dfs, sort=False)

    if in_format == "contrib":
        regrouped_table = pd.pivot_table(raw_new_ids_combined,
                                         index=['sample', 'function', 'taxon',
                                                'taxon_abun',
                                                'taxon_rel_abun'],
                                         aggfunc=np.sum)

    elif in_format == "strat":
else:
            raise "Unknown format"
    else:
        format = imgIn.dtype.char
        if format == 'f2':
            args.format = 'f16'
        else:
            format = 'f4'
            args.format = 'f32'

    if imgIn.dtype.char != format:
        print "Converting to ", args.format, "(",format,")"
    imgIn = imgIn.astype(format)
            
    print (args.output_file.rsplit('.', 1) if args.output_file else args.input_file.rsplit('.',1))
    result = Parallel(n_jobs=8)(delayed(convertFace)(args,imgIn,i) for i in xrange(6))
    
    if args.flatten_cubemap:
        components = args.output_file.rsplit('.', 1) if args.output_file else args.input_file.rsplit('.',1)
        filename = components[0] + "_" + str(imgIn.shape[0]/2) + "_full-cubemap_" +args.format+".raw"
        result_arrays = result.sort(key=lambda x: FACE_REMAP_ORDER[x[0]])
        numpy.concatenate(tuple([x[1] for x in result])).tofile(open(filename,"wb"))
    
    print "Time elapsed: ",(time.time() - start)
    print "Saved processed image as: " + filename
    print '== PVRTexTool Wrap Raw Data settings =='
    print '= Width x Height : %d x %d' % (imgIn.shape[0]/2 , imgIn.shape[0]/2)
    print '= Variable type  : "Signed Floating Point"'
    print '= Colour space   : Linear RGB'
    print '= Faces          : 6'
    print '= MIP-Map levels : 1'
    print '= Array Members  : 1'
clf = svm.SVC(
            verbose=True,
            probability=True,
            C=0.0001,
            kernel="rbf",
            gamma=0.001,
            class_weight="balanced",
        )
        clf.fit(train_features, train_labels)

        # print("Best estimator found by grid search:")
        # print(clf.best_estimator_)

        # joblib.dump(clf, saved_classifier_filename)
    else:
        clf = joblib.load(saved_classifier_filename)

    # (test_features, test_labels) = get_test_features_and_labels(load_test_features)

    test_labels_bin = label_binarize(test_labels, classes=[-1, 1])

    pred_labels = clf.predict(test_features)

    pred_confidences = clf.predict_proba(test_features)

    plot_roc_curve(test_labels_bin, pred_confidences)

    from sklearn.metrics import (
        roc_curve,
        accuracy_score,
        confusion_matrix,
        roc_auc_score,

Is your System Free of Underlying Vulnerabilities?
Find Out Now