Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'fuzzywuzzy' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
# compute input vars for fuzzy
# height ratio wrt main text height
hrii=hii/main_height
# lowest y0
y0ii=[ljj.y0 for ljj in gii]
y0ii=np.min(y0ii)/page_h
# number of words
nwordsii=len(tii.split(' '))
# similartiy measure between a predefined list of non-title words
notitlefmii=[fuzz.token_set_ratio(tii,jj) for jj in NON_TITLE_LIST]
notitlefmii=np.mean(notitlefmii)
# similarity measure between title obtained from meta data
if doctitle:
metatitlefmii=fuzz.ratio(tii, doctitle)
gr_lines.append((tii,hii,y0ii,hrii,nwordsii,notitlefmii,metatitlefmii))
else:
gr_lines.append((tii,hii,y0ii,hrii,nwordsii,notitlefmii))
#pprint(gr_lines)
#----------------Do fuzzy logic----------------
fuzz_scores=FCTitleGuess(gr_lines, doctitle)
title_idx=np.argmax(fuzz_scores)
title_guess=gr_lines[title_idx]
title_y0=title_guess[2]*page_h
title_x0=groups[title_idx][0].x0
#----------------Guess author list----------------
top_lines=line_dict.keys()
def compare_output(baseline, current):
similarity = 50;
if (DEFAULT_ALGORITHM == 'ratio'):
similarity = fuzz.ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_ratio'):
similarity = fuzz.partial_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_sort_ratio'):
similarity = fuzz.token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_token_sort_ratio'):
similarity = fuzz.partial_token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_set_ratio'):
similarity = fuzz.token_set_ratio(baseline, current)
else:
print("Unknown similarity measure " + DEFAULT_ALGORITHM + ". Aborting")
sys.exit(-1)
return similarity
def compare_output(baseline, current):
similarity = 50;
if (DEFAULT_ALGORITHM == 'ratio'):
similarity = fuzz.ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_ratio'):
similarity = fuzz.partial_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_sort_ratio'):
similarity = fuzz.token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_token_sort_ratio'):
similarity = fuzz.partial_token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_set_ratio'):
similarity = fuzz.token_set_ratio(baseline, current)
else:
print("Unknown similarity measure " + DEFAULT_ALGORITHM + ". Aborting")
sys.exit(-1)
return similarity
def compare_output(baseline, current):
similarity = 50;
if (DEFAULT_ALGORITHM == 'ratio'):
similarity = fuzz.ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_ratio'):
similarity = fuzz.partial_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_sort_ratio'):
similarity = fuzz.token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'partial_token_sort_ratio'):
similarity = fuzz.partial_token_sort_ratio(baseline, current)
elif (DEFAULT_ALGORITHM == 'token_set_ratio'):
similarity = fuzz.token_set_ratio(baseline, current)
else:
print("Unknown similarity measure " + DEFAULT_ALGORITHM + ". Aborting")
sys.exit(-1)
return similarity
def test_asciionly(self):
for s in self.mixed_strings:
# ascii only only runs on strings
s = utils.asciidammit(s)
utils.asciionly(s)
def testRatioUnicodeString(self):
s1 = "\u00C1"
s2 = "ABCD"
score = fuzz.ratio(s1, s2)
self.assertEqual(0, score)
def test_dict_like_extract(self):
"""We should be able to use a dict-like object for choices, not only a
dict, and still get dict-like output.
"""
try:
from UserDict import UserDict
except ImportError:
from collections import UserDict
choices = UserDict({'aa': 'bb', 'a1': None})
search = 'aaa'
result = process.extract(search, choices)
self.assertTrue(len(result) > 0)
for value, confidence, key in result:
self.assertTrue(value in choices.values())
def test_service_metadata(self):
self.maxDiff = None
response = self.client.get('/api/1.0/refine/reconcile', {'callback': 'jsonp123'})
self.assertEqual(200, response.status_code)
self.assertEqual(100,
fuzz.token_sort_ratio(
'jsonp123({"name": "Influence Explorer Reconciliation3", "identifierSpace": "http://staging.influenceexplorer.com/ns/entities", "schemaspace": "http://staging.influenceexplorer.com/ns/entity.object.id", "view": { "url": "http://staging.influenceexplorer.com/entity/{{id}}" }, "preview": { "url": "http://staging.influenceexplorer.com/entity/{{id}}", "width": 430, "height": 300 }, "defaultTypes": []})',
response.content
)
def testTokenSetRatio(self):
self.assertEqual(fuzz.token_set_ratio(self.s4, self.s5), 100)
self.assertEqual(fuzz.token_set_ratio(self.s8, self.s8a, full_process=False), 100)
self.assertEqual(fuzz.token_set_ratio(self.s9, self.s9a, full_process=True), 100)
self.assertEqual(fuzz.token_set_ratio(self.s9, self.s9a, full_process=False), 100)
self.assertEqual(fuzz.token_set_ratio(self.s10, self.s10a, full_process=False), 50)
def test_fullProcess(self):
for s in self.mixed_strings:
utils.full_process(s)