Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "sympy in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'sympy' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

def print_error_bound(name, indent, variable_name, series_length, coefficients, nextc):
    is_alternating = sign(coefficients[-1]) != sign(coefficients[-2])
    if is_alternating:
        nextc = abs(nextc)
        print(f"{indent}// Error is at most {format_real_coefficient(nextc)}*{variable_name}**{series_length} when {variable_name} >= 0")
        ulp1 = 2.220446049250313e-16
        if name == "2: Digamma at 1":
            offset = S(1e6)
        elif name == "3: Digamma at 2":
            offset = 1 + digamma(1)
        elif name == "4: Digamma asymptotic":
            offset = S(1)
        elif name == "5: Trigamma at 1":
            offset = S(1e8)
        elif name == "7: Tetragamma at 1":
            offset = S(2e12)
        elif name == "6: Trigamma asymptotic":
            offset = S(1)
        elif name == "8: Tetragamma asymptotic":
            offset = S(12**-3)
        elif name == "15: log(exp(x) - 1) / x":
            offset = S(-log(1e-3))
        else:
            offset = abs(coefficients[0])
        if offset == 0:
            offset = abs(coefficients[1])
            if offset == 0:
                offset = abs(coefficients[2])
v = {}
        v[(0, 0)] = [self._print(a) for a in e.an]
        v[(0, 1)] = [self._print(a) for a in e.aother]
        v[(1, 0)] = [self._print(b) for b in e.bm]
        v[(1, 1)] = [self._print(b) for b in e.bother]

        P = self._print(e.argument)
        P.baseline = P.height()//2

        vp = {}
        for idx in v:
            vp[idx] = self._hprint_vec(v[idx])

        for i in range(2):
            maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
            for j in range(2):
                s = vp[(j, i)]
                left = (maxw - s.width()) // 2
                right = maxw - left - s.width()
                s = prettyForm(*s.left(' ' * left))
                s = prettyForm(*s.right(' ' * right))
                vp[(j, i)] = s

        D1 = prettyForm(*vp[(0, 0)].right('  ', vp[(0, 1)]))
        D1 = prettyForm(*D1.below(' '))
        D2 = prettyForm(*vp[(1, 0)].right('  ', vp[(1, 1)]))
        D = prettyForm(*D1.below(D2))

        # make sure that the argument `z' is centred vertically
        D.baseline = D.height()//2

        # insert horizontal separator
if n&(n - 1): # not a power of 2
        b += 1
        n = 2**b

    a += [S.Zero]*(n - len(a))
    for i in range(1, n):
        j = int(ibin(i, b, str=True)[::-1], 2)
        if i < j:
            a[i], a[j] = a[j], a[i]

    ang = -2*pi/n if inverse else 2*pi/n

    if dps is not None:
        ang = ang.evalf(dps + 2)

    w = [cos(ang*i) + I*sin(ang*i) for i in range(n // 2)]

    h = 2
    while h <= n:
        hf, ut = h // 2, n // h
        for i in range(0, n, h):
            for j in range(hf):
                u, v = a[i + j], expand_mul(a[i + j + hf]*w[ut * j])
                a[i + j], a[i + j + hf] = u + v, u - v
        h *= 2

    if inverse:
        a = [(x/n).evalf(dps) for x in a] if dps is not None \
                            else [x/n for x in a]

    return a
def xiu(n):
    points = []
    for k in range(n + 1):
        pt = []
        # Slight adaptation:
        # The article has points for the weight 1/sqrt(2*pi) exp(−x**2/2)
        # so divide by sqrt(2) to adapt for 1/sqrt(pi) exp(−x ** 2)
        for r in range(1, n // 2 + 1):
            alpha = (2 * r * k * pi) / (n + 1)
            pt += [cos(alpha), sin(alpha)]
        if n % 2 == 1:
            pt += [(-1) ** k / sqrt(2)]
        points.append(pt)

    points = numpy.array(points)
    weights = numpy.full(n + 1, frac(1, n + 1))
    return Enr2Scheme("Xiu", n, weights, points, 2, source)
quotient between successive terms must be a quotient of integer
    polynomials.
    """
    from sympy import Float, hypersimp, lambdify

    if prec == float('inf'):
        raise NotImplementedError('does not support inf prec')

    if start:
        expr = expr.subs(n, n + start)
    hs = hypersimp(expr, n)
    if hs is None:
        raise NotImplementedError("a hypergeometric series is required")
    num, den = hs.as_numer_denom()

    func1 = lambdify(n, num)
    func2 = lambdify(n, den)

    h, g, p = check_convergence(num, den, n)

    if h < 0:
        raise ValueError("Sum diverges like (n!)^%i" % (-h))

    term = expr.subs(n, 0)
    if not term.is_Rational:
        raise NotImplementedError("Non rational term functionality is not implemented.")

    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
def eval(cls, arg):
        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.Infinity
            elif intlike(arg):
                if arg.is_positive:
                    return factorial(arg - 1)
                else:
                    return S.ComplexInfinity
            elif arg.is_Rational:
                if arg.q == 2:
                    n = abs(arg.p) // arg.q

                    if arg.is_positive:
                        k, coeff = n, S.One
                    else:
                        n = k = n + 1
def single_beam_trapezload_test(curr_doc: CurrentDoc):
    start_knot = Knot.Knot(0, 0, 0, ElSupEnum.SUPPORT_FIXED_END.value, 0)
    end_knot = Knot.Knot(1, 1, 0, ElSupEnum.SUPPORT_ROLLER_END.value,  0)
    q = Symbol('p')
    x = Symbol('x')
    l = Symbol('l')
    lineload = [0, q * x]
    temp_prop = TempProps.TempProps(0, 0, 0)
    knot_list = [[start_knot, end_knot]]
    elementlist = []
    ele = ElementCalculation(0, start_knot, end_knot, l, lineload, temp_prop)
    start_knot.add_coupled_el(0)
    end_knot.add_coupled_el(0)
    elementlist.append(ele)
    functions, x, l_list = CalculationElement(elementlist)
    testbox.print_graphs(functions, x, l_list, knot_list)
testbench.test()

    if cli:
        r = ahkab.run(mycircuit, [symbolic_sim, ac_sim])
        E = r['symbolic'][0].as_symbol('E1')
        out_hp = sympy.limit(r['symbolic'][0]['VU1o'], E, sympy.oo, '+')
        out_bp = sympy.limit(r['symbolic'][0]['VU2o'], E, sympy.oo, '+')
        out_lp = sympy.limit(r['symbolic'][0]['VU3o'], E, sympy.oo, '+')
        out_hp = out_hp.simplify()
        out_bp = out_bp.simplify()
        out_lp = out_lp.simplify()
        print("VU1o =", out_hp)
        print("VU2o =", out_bp)
        print("VU3o =", out_lp)

        w = sympy.Symbol('w')
        out_hp = out_hp.subs({r['symbolic'][0].as_symbol('RF1'):10e3,
                              r['symbolic'][0].as_symbol('C10'):15e-9,
                              r['symbolic'][0].as_symbol('V1'):1,
                              r['symbolic'][0].as_symbol('s'):1j*w,
                              })
        out_bp = out_bp.subs({r['symbolic'][0].as_symbol('RF1'):10e3,
                              r['symbolic'][0].as_symbol('C10'):15e-9,
                              r['symbolic'][0].as_symbol('V1'):1,
                              r['symbolic'][0].as_symbol('s'):1j*w,
                              })
        out_lp = out_lp.subs({r['symbolic'][0].as_symbol('RF1'):10e3,
                              r['symbolic'][0].as_symbol('C10'):15e-9,
                              r['symbolic'][0].as_symbol('V1'):1,
                              r['symbolic'][0].as_symbol('s'):1j*w,
                              })
        out_lp = sympy.lambdify((w,), out_lp, modules='numpy')
def test_hyper():
    for x in sorted(exparg):
        test("erf", x, N(sp.erf(x)))
    for x in sorted(exparg):
        test("erfc", x, N(sp.erfc(x)))

    gamarg = FiniteSet(*(x+S(1)/12 for x in exparg))
    betarg = ProductSet(gamarg, gamarg)
    for x in sorted(gamarg):
        test("lgamma", x, N(sp.log(abs(sp.gamma(x)))))
    for x in sorted(gamarg):
        test("gamma", x, N(sp.gamma(x)))
    for x, y in sorted(betarg, key=lambda (x, y): (y, x)):
        test("beta", x, y, N(sp.beta(x, y)))

    pgamarg = FiniteSet(S(1)/12, S(1)/3, S(3)/2, 5)
    pgamargp = ProductSet(gamarg & Interval(0, oo, True), pgamarg)
    for a, x in sorted(pgamargp):
        test("pgamma", a, x, N(sp.lowergamma(a, x)))
    for a, x in sorted(pgamargp):
        test("pgammac", a, x, N(sp.uppergamma(a, x)))
    for a, x in sorted(pgamargp):
        test("pgammar", a, x, N(sp.lowergamma(a, x)/sp.gamma(a)))
    for a, x in sorted(pgamargp):
        test("pgammarc", a, x, N(sp.uppergamma(a, x)/sp.gamma(a)))
    for a, x in sorted(pgamargp):
        test("ipgammarc", a, N(sp.uppergamma(a, x)/sp.gamma(a)), x)

    pbetargp = [(a, b, x) for a, b, x in ProductSet(betarg, pgamarg)
                if a > 0 and b > 0 and x < 1]
    pbetargp.sort(key=lambda (a, b, x): (b, a, x))
    for a, b, x in pbetargp:
def substitute(self, expression: sympy.Expr, substitutions: dict):
        for key, value in substitutions.items():
            if not isinstance(value, sympy.Expr):
                substitutions[key] = sympy.sympify(value)
        return expression.subs(substitutions, simultaneous=True).doit()

Is your System Free of Underlying Vulnerabilities?
Find Out Now