Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "plotly in functional component" in Python

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'plotly' in functional components in Python. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

trace = go.Scatter(
        name='Time for molNum = {}'.format(num_molecules),
        x=x_list,
        y=y1_list,
        mode='markers+lines',
        marker=dict(
            symbol=key_to_symbol[(num_molecules,'wall_time')],
            size=10,
        ),
        line=dict(
            color='black',
            dash='solid',
        )
    )
    data.append(trace)
    trace = go.Scatter(
        name='RAM for molNum = {}'.format(num_molecules),
        x=x_list,
        y=y2_list,
        yaxis='y2',
        mode='markers+lines',
        marker=dict(
            symbol=key_to_symbol[(num_molecules,'mem')],
            size=10,
        ),
        line=dict(
            color='black',
            dash='longdash',
        )
    )
    print(key_to_symbol[(num_molecules,'mem')],)
    data.append(trace)
def test_user_interventions_count_linechart():
    df = load_chat_as_df()
    fb = FigureBuilder(df=df)
    fig = fb.user_interventions_count_linechart()
    assert isinstance(fig, go.Figure)
    assert ('data' in fig and 'layout' in fig)
plt.ylabel('Population count (B)')
plt.show()

###############################################################################
# ## Stacked bar plot with plotly

###############################################################################
# Stacked area plots (with cumulated values computed depending on
# selected legends) are
# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For
# now we just do a stacked bar plot.

import plotly.offline as offline
import plotly.graph_objs as go

offline.init_notebook_mode()

""
bars = [go.Bar(x=population.index, y=population[zone], name=zone)
        for zone in zones]
fig = go.Figure(data=bars,
                layout=go.Layout(title='World population',
                                 barmode='stack'))
offline.iplot(fig)
data = history.load_pair_history(pair=pair, ticker_interval='1m',
                                     datadir=testdatadir, timerange=timerange)
    indicators1 = ["ema10"]
    indicators2 = ["macd"]

    # Generate buy/sell signals and indicators
    strat = DefaultStrategy(default_conf)
    data = strat.analyze_ticker(data, {'pair': pair})
    fig = generate_empty_figure()

    # Row 1
    fig1 = add_indicators(fig=deepcopy(fig), row=1, indicators=indicators1, data=data)
    figure = fig1.layout.figure
    ema10 = find_trace_in_fig_data(figure.data, "ema10")
    assert isinstance(ema10, go.Scatter)
    assert ema10.yaxis == "y"

    fig2 = add_indicators(fig=deepcopy(fig), row=3, indicators=indicators2, data=data)
    figure = fig2.layout.figure
    macd = find_trace_in_fig_data(figure.data, "macd")
    assert isinstance(macd, go.Scatter)
    assert macd.yaxis == "y3"

    # No indicator found
    fig3 = add_indicators(fig=deepcopy(fig), row=3, indicators=['no_indicator'], data=data)
    assert fig == fig3
    assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog)
fig1 = generate_empty_figure()
    # nothing happens when no trades are available
    fig = plot_trades(fig1, None)
    assert fig == fig1
    assert log_has("No trades found.", caplog)
    pair = "ADA/BTC"
    filename = testdatadir / "backtest-result_test.json"
    trades = load_backtest_data(filename)
    trades = trades.loc[trades['pair'] == pair]

    fig = plot_trades(fig, trades)
    figure = fig1.layout.figure

    # Check buys - color, should be in first graph, ...
    trade_buy = find_trace_in_fig_data(figure.data, "trade_buy")
    assert isinstance(trade_buy, go.Scatter)
    assert trade_buy.yaxis == 'y'
    assert len(trades) == len(trade_buy.x)
    assert trade_buy.marker.color == 'green'

    trade_sell = find_trace_in_fig_data(figure.data, "trade_sell")
    assert isinstance(trade_sell, go.Scatter)
    assert trade_sell.yaxis == 'y'
    assert len(trades) == len(trade_sell.x)
    assert trade_sell.marker.color == 'red'
def scatter_plot(coin_select, datefilter):
    df = filter_reddit(df_scatter, coin_select, datefilter)
    data = [
        go.Scatter(
            y=df[df['name'] == i]['post_count'],
            x=df[df['name'] == i]['market_cap_usd'],
            opacity=0.8,
            hovertext=df[df['name'] == i]['created'],
            mode = 'markers',
            marker = dict(size = 15),
            name=i

        ) for i in coin_select
    ]
    layout = go.Layout(
        title='Mentions vs Marketcap',
        xaxis=dict(
             title='Marketcap (Log Scale)',
             
        type='log',
        autorange=True,
        
    ),
    hovermode='closest',
    yaxis=dict(
        title='Mention Count',
        
        autorange=True
    )
    )
    figure = {'data':data,
targets.extend(list(range(len(df.index), len(df.index) + len(df.loc[item]))))
            values.extend([j for j in df.loc[item].values])
            if type(item) is tuple:
                labels.extend([str(item[0]) + ' -> ' + str(jtem[0]) for jtem in df.loc[item].index])
            else:
                labels.extend([str(item) + ' -> ' + str(jtem) for jtem in df.loc[item].index])

        colorscales = [dict(label=label, colorscale=[[0, linksColor], [1, linksColor]]) for label in labels]

        if not nodeColors is None:
            for i in range(len(sources)):
                if nodeColors[sources[i]] == nodeColors[targets[i]]:
                    newColor = ','.join(nodeColors[sources[i]].split(',')[:3] + ['0.6)'])
                    colorscales[i] = dict(label=labels[i], colorscale=[[0, newColor], [1, newColor]])

        fig = go.Figure(data=[go.Sankey(valueformat = '', valuesuffix = '',
            node = dict(pad = 20, thickness = 40, line = dict(color = 'white', width = 0.5), label = nodeLabels, color = nodeColors,),
            link = dict(source = sources, target = targets, value = values, label = labels, colorscales = colorscales, hoverinfo='all'))]) #line ={'color':'rgba(255,0,0,0.8)', 'width':0.1}

        if not title is None:
            fig.update_layout(title_text=title, font_size=10)

        fig.update_layout(margin=dict(l=border, r=border, t=border, b=border))

        try:
            fig.write_image(os.path.join(self.saveDir, self.dataName + nameAppend + '.png'), width=width, height=height, scale=quality)

        except Exception as exception:
            if self.verbose >= 2:
                print('Cannot save static image (likely due to missing orca). Saving to interactive html')
            attemptSavingHTML = True
model.fit(df[xvars])

    # TODO: Find a meaningful way (metric) to notify the user of model score.
    try:
        layout = [[html.H4(f"Clustering model scored: {model.score(df[xvars])}")]]
    except AttributeError:
        # model without a score function
        layout = [[html.H4(f"No score for this method.")]]

    labels = model.labels_
    # TODO: If Y is given, visualize the (in)correctly grouped points.
    # If we have >=2 variables, visualize the clusters
    if len(xvars) >= 3:

        trace1 = go.Scatter3d(x=df[xvars[0]],
                              y=df[xvars[1]],
                              z=df[xvars[2]],
                              showlegend=False,
                              mode='markers',
                              marker=dict(
                                  color=labels.astype(np.float),
                                  line={'color': 'black', 'width': 1}
                              ))

        layout += [{
            'data': [trace1],
            'layout': layouts.default_2d(xvars[0], xvars[1])
        }]

    elif len(xvars) == 2:
        trace = scatterplot(df[xvars[0]], df[xvars[1]],
def _update_spatial_unit(self, uid, rely1, rely2, rely3, rely4, rely5,
                             state):
        print('update_spatial_unit')
        _initial = False
        _update = False
        if not state:
            _initial = True
        elif not state['data'][0]['customdata'] == uid:
            _update = True
        if _initial or _update:
            cur_A = self.cnmf['A'].sel(unit_id=uid if not uid is None else [])
            trace = [
                go.Heatmap(
                    x=cur_A.coords['width'].values,
                    y=cur_A.coords['height'].values,
                    z=cur_A.values,
                    colorscale='Viridis',
                    colorbar=dict(x=1),
                    hoverinfo='none',
                    customdata=uid)
            ]
            if _update:
                state.update(data=trace)
        if _initial:
            layout = go.Layout(
                title="Spatial Component of unit: {}".format(uid),
                xaxis=dict(
                    title='width',
                    range=[0, self._w],
stream_ids=stream_ids
        )
        today = datetime.date.today()
        counts = [
            matad.matcoll.count(), matad.doicoll.count(),
            len(matad.get_all_dois())
        ]
        names = ['materials', 'requested DOIs', 'validated DOIs']
        data = Data([
            Scatter(
                x=[today], y=[counts[idx]], name=names[idx],
                stream=dict(token=stream_ids[idx], maxpoints=10000)
            ) for idx,count in enumerate(counts)
        ])
        filename = 'dois_{}'.format(today)
        print py.plot(data, filename=filename, auto_open=False)
else:
    # generate records for either n or all (n=0) not-yet-submitted materials 
    # OR generate records for specific materials (submitted or not)
    osti = OstiRecord(l=args.l, n=args.n, db_yaml=db_yaml)
    osti.submit()

Is your System Free of Underlying Vulnerabilities?
Find Out Now