Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "natural in functional component" in JavaScript

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'natural' in functional components in JavaScript. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

var lemmatizer = new Lemmatizer();

var antonyms = {}
//var data = fs.readFileSync("./antonyms.txt", 'utf8').split("\n")

/*_.each(data, function(value, key, list){
        var value1 = value.split(",")
        antonyms[value1[0]] = value1[1]
        antonyms[value1[1]] = value1[0]
}, this)
*/


var old_unused_tokenizer = {tokenize: function(sentence) { return sentence.split(/[ \t,;:.!?]/).filter(function(a){return !!a}); }}

var tokenizer = new natural.RegexpTokenizer({pattern: /[^a-zA-Z0-9\-\?]+/});

console.vlog = function(data) { fs.appendFileSync(log_file, data + '\n', 'utf8') };

// var tokenizer = new natural.WordTokenizer({'pattern':(/(\W+|\%)/)}); // WordTokenizer, TreebankWordTokenizer, WordPunctTokenizer
// var ngrams = new natural.NGrams.ngrams()

// var enhance = function (classifierType, featureExtractor, inputSplitter, featureLookupTable, labelLookupTable, preProcessor, postProcessor, TestSplitLabel, multiplyFeaturesByIDF, featureExpansion, featureExpansionScale, featureExpansionPhrase, featureFine, expansionParam) {
var enhance = function (classifierType, featureExtractor, inputSplitter, featureLookupTable, labelLookupTable, preProcessor, postProcessor, TestSplitLabel, multiplyFeaturesByIDF, featureOptions) {
// var enhance = function (classifierType, featureLookupTable, labelLookupTable) {
	return classifiers.EnhancedClassifier.bind(0, {
		normalizer: normalizer,

		inputSplitter: inputSplitter,
		featureOptions:featureOptions,

		// featureExpansion: featureExpansion,
// Sample data for these examples (coerced to strings):

var economy = ' ' + fs.readFileSync('data/texts/economy.txt');
var politics = ' ' + fs.readFileSync('data/texts/politics.txt');
var sports = ' ' + fs.readFileSync('data/texts/sports.txt');

var natural = require('natural'),
  tokenizer = new natural.WordTokenizer();

console.log("\n-- Tokenized sample text in politics.txt:");
console.log(tokenizer.tokenize(politics));

console.log("\n-- Use Porter Stemmer on a single word:");
console.log(natural.PorterStemmer.stem("dogs"));

natural.PorterStemmer.attach();  // add methods to string

console.log("\n-- Use Porter Stemmer text in file sports.txt:");
console.log(sports.tokenizeAndStem());

console.log("dog dogs Dog dogged".tokenizeAndStem());

var classifier = new natural.BayesClassifier();

classifier.addDocument(economy, 'economy');
classifier.addDocument(politics, 'politics');
classifier.addDocument(sports, 'sports');
classifier.train();

console.log("\n-- Bayesian classifier test results:");

console.log(classifier.classify('The President and Congress went on vacation.'));
function createHashedIndexFiles(lang, indexPath, indexData, type) {

	var words_to_stem = {};
	var stem_to_words = {};
	var stemmer = null;

	switch (lang) {
		case 'eng':
			stemmer = natural.PorterStemmer;
			break;
		case 'esp':
			stemmer = natural.PorterStemmerEs;
			break;
	}

	//console.log('trying to create index', stemmer);

	if (type == 'words' && stemmer != null) {

		// make stems
		for (var key in indexData) {

			var wordData = indexData[key],
				stemmedWord = stemmer.stem(key);
return new Promise((resolve, reject) => {
    const tokens = tokenizer.tokenize(phrase);
    tokens.map(token => {
      console.log(token, Natural.PorterStemmer.stem(token))
    });

    Natural.LancasterStemmer.attach();
    console.log(phrase.tokenizeAndStem());

    resolve({
      engine: 'compromise',
      ms: (new Date() - time),

      tokens: tokenizer.tokenize(phrase),
      stemmers: Natural.PorterStemmer.stem(phrase)
      // glossary: glossary.parse(phrase),
      // sentiment: analyser.classify(phrase),
    });
  });
};
/* tslint:disable */
import * as natural from 'natural';
const tokenizer = new natural.WordTokenizer();
console.log(tokenizer.tokenize('your do a dog dog has fleas.'));

const NGrams = natural.NGrams;
console.log(NGrams.ngrams('This is a text document to analyze.', 5));

import { CountVectorizer } from './text';

//
const cv = new CountVectorizer();

const text1 = ['deep learning ian good fellow learning jason shin shin', 'yoshua bengio'];

console.log('original text', text1);
const vocabCounts = cv.fit_transform(text1);
console.log(vocabCounts);
console.log(cv.vocabulary);
// -- More info: https://github.com/NaturalNode/natural
'use strict';

import Natural from 'natural';
// -- Internal
const tokenizer = new Natural.WordTokenizer()

export default (phrase) => {
  const time = new Date();
  return new Promise((resolve, reject) => {
    const tokens = tokenizer.tokenize(phrase);
    tokens.map(token => {
      console.log(token, Natural.PorterStemmer.stem(token))
    });

    Natural.LancasterStemmer.attach();
    console.log(phrase.tokenizeAndStem());

    resolve({
      engine: 'compromise',
      ms: (new Date() - time),
function listen() {
  const host = server.address().address;
  const port = server.address().port;
  console.log('Example app listening at http://' + host + ':' + port);
}

// Do we already have a classifier "database"
const exists = fs.existsSync('classifier.json');

// If we do, load it
if (exists) {
  natural.BayesClassifier.load('classifier.json', null, loaded);
  // If not make a new one
} else {
  console.log('starting a new classifier');
  classifier = new natural.BayesClassifier();
}

// All set and loaded
function loaded(err, cf) {
  classifier = cf;
  console.log('Classifier loaded');
}

// This is a post for training
app.post('/train', training);

function training(req, res) {
  // Get the text and category
  const text = req.body.text;
  const category = req.body.category;
var natural = require('natural')
var csv = require('fast-csv')
var fs = require('fs')
var path = require('path')
var jsonfile = require('jsonfile')
natural.LancasterStemmer.attach();

var query_classify = new natural.BayesClassifier();
var both_streams_ended = false;
var NGrams = natural.NGrams;


console.log('Non-queries');
var stream = fs.createReadStream(path.resolve('./plugins/training', 'conv_bot_db_augmented.csv'))
	.pipe(csv.parse())
	.on('readable', function(){
		var row;
		while(null !== (row = stream.read())){
			// console.log('unstemmed:',row);
			// console.log('stemmed:',)
			// console.log('->added document:',row[0])
			var bgrams1 = NGrams.ngrams(row[0].toLowerCase(), 2, null, '[end]')
			// var bgrams1 = NGrams.bigrams(row[0].toLowerCase());
			for (var i = 0; i < bgrams1.length; i++) {
				query_classify.addDocument(bgrams1[i], 'no');			
			};
if (!('sentences' in sample))
	   throw new Error("for some reason sentences not in sample")

	if (!_.isArray(sample['sentences']))
		sample['sentences'] = [sample['sentences']]

	var tokens = _.compact(_.flatten(_.pluck(sample['sentences'], 'tokens')))

	var words = []
	_.each(tokens, function(token, key, list){
		words.push(token.word.toLowerCase())
	}, this)

	// var feature = natural.NGrams.ngrams(words, 1).concat(natural.NGrams.ngrams(words, 2))
	var feature = natural.NGrams.ngrams(words, 1)

	_.each(feature, function(value, key, list){
		features[value] = 1
	}, this)

	console.log("feAsyncPrimitive: train: "+train+" FEATURES: "+JSON.stringify(features, null, 4))
	callback(null, features)
}
if ("input" in sample)
		sample = sample.input

/*	if (!('basic-dependencies' in sample['sentences']))
		throw new Error("train:"+train+" basic-dependencies not in the sample "+JSON.stringify(sample))
*/	
/*	if (!('sentences' in sample))
	   throw new Error("for some reason sentences not in sample "+JSON.stringify(sample))
*/
/*	if (!('tokens' in sample['sentences']))
	   throw new Error("for some reason tokens not in sample"+JSON.stringify(sample, null, 4))
*/
	if (_.isArray(sample['sentences']))
	   throw new Error("feAsync is only for object sentences")

	var tokenizer = new natural.RegexpTokenizer({pattern: /[^\%a-zA-Z0-9\-\?]+/});
	var text = regexpNormalizer(sample["text"].toLowerCase())
	
	console.vlog("feAsyncStanford: text: "+text)
	// the array of tokens
	// var tokenized = tokenizer.tokenize(text)
	// console.vlog("feAsyncStanford: tokenized: "+JSON.stringify(tokenized, null, 4))

	// sample['sentences'] = {"tokens":[]}

	// _.each(tokenized, function(value, key, list){
 //    	sample['sentences']['tokens'].push({
 //            "word": value,
 //            // "lemma": value[0]
 //            "lemma": natural.PorterStemmer.stem(value)
 //        	// "lemma": lemmerEng.lemmatize(value[0])
 //        })

Is your System Free of Underlying Vulnerabilities?
Find Out Now