Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'gl-mat4' in functional components in JavaScript. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.
constructor() {
super();
// FIXME: replace identity() with create()
this.matrix = identity([]);
this.matrixWorld = identity([]);
this.position = [0, 0, 0];
this.scale = [1, 1, 1];
this.quaternion = [0, 0, 0, 1];
this.children = [];
this.matrixAutoUpdate = true;
this.matrixWorldAutoUpdate = true;
}
unormal: (context, props) => {
const model = props.model || props.transforms.matrix
// console.log('here', model)
// const model = mat4.identity([])
const modelViewMatrix = mat4.multiply(mat4.create(), model, props.camera.view)
const normalMatrix = mat4.create()
mat4.invert(normalMatrix, modelViewMatrix)
mat4.transpose(normalMatrix, normalMatrix)
return normalMatrix
}
},
return (props) => {
const defaults = {
model: mat4.identity([])
}
props = Object.assign({}, defaults, props)
return single([
{ color: xColor, model: mat4.multiply(mat4.create(), props.model, xAxisModel) }, // X
{ color: yColor, model: mat4.multiply(mat4.create(), props.model, yAxisModel) }, // Y
{ color: zColor, model: mat4.multiply(mat4.create(), props.model, zAxisModel) } // Z
])
}
}
return (props) => {
const defaults = {
model: mat4.identity([])
}
props = Object.assign({}, defaults, props)
return single([
{ color: xColor, model: mat4.multiply(mat4.create(), props.model, xAxisModel) }, // X
{ color: yColor, model: mat4.multiply(mat4.create(), props.model, yAxisModel) }, // Y
{ color: zColor, model: mat4.multiply(mat4.create(), props.model, zAxisModel) } // Z
])
}
}
function paint( xRot, yRot ) {
if (!initialized) { return }
if (polyBuffersOutdated) {
// buffers out of sync w/ arrays since last mutation wasn't kept
vertBuffer.update( polys.vertArr )
colBuffer.update( polys.colArr )
}
// rotation matrix (simple Euler angles)
camMatrix = mat4.create()
mat4.rotateY(camMatrix, camMatrix, yRot)
mat4.rotateX(camMatrix, camMatrix, xRot)
// paint polygons
drawData( SCREEN, perspective, camMatrix )
}
function paint(xRot, yRot) {
if (polyBuffersOutdated) {
// buffers out of sync w/ arrays since last mutation wasn't kept
vertBuffer.update(polys.getVertArray())
colBuffer.update(polys.getColorArray())
}
// rotation matrix (simple Euler angles)
camMatrix = mat4.create()
mat4.rotateY(camMatrix, camMatrix, xRot || 0)
mat4.rotateX(camMatrix, camMatrix, yRot || 0)
// paint polygons
drawData(null, perspective, camMatrix)
}
function centerGeometry(geo, scale) {
// Calculate the bounding box.
var bb = boundingBox(geo.positions);
// Translate the geometry center to the origin.
var translate = [-0.5 * (bb[0][0] + bb[1][0]), -0.5 * (bb[0][1] + bb[1][1]), -0.5 * (bb[0][2] + bb[1][2])];
var m = mat4.create();
mat4.scale(m, m, [scale, scale, scale]);
mat4.translate(m, m, translate);
geo.positions = transform(geo.positions, m)
}
function setupCube ({center, fbo}, block) {
mat4.perspective(
cubeProps.projection,
Math.PI / 2.0,
1.0,
0.25,
1000.0)
cubeProps.cubeFBO = fbo
cubeProps.center = center
// execute `setupCubeFace` 6 times, where each time will be
// a different batch, and the batchIds of the 6 batches will be
// 0, 1, 2, 3, 4, 5
setupCubeFace.call(cubeProps, 6, block)
}
model: ({model}, {scale = 1, translate = 0}) => (
mat4.scale([], mat4.translate([], model, [0, translate, 0]), [scale, scale, scale])
)
},
return (_, {model, headModel}) => mat4.multiply(out, model, headModel)
})()