Cloud Defense Logo

Products

Solutions

Company

Book A Live Demo

Top 10 Examples of "fast-csv in functional component" in JavaScript

Dive into secure and efficient coding practices with our curated list of the top 10 examples showcasing 'fast-csv' in functional components in JavaScript. Our advanced machine learning engine meticulously scans each line of code, cross-referencing millions of open source libraries to ensure your implementation is not just functional, but also robust and secure. Elevate your React applications to new heights by mastering the art of handling side effects, API calls, and asynchronous operations with confidence and precision.

async function batched () {
  winston.info(`creating ${totalBatches} csv file `)
  let currentBatch = 0
  let teacherIndex = 1
  while (currentBatch < totalBatches) {
    winston.info(`creating batch ${currentBatch}`)
    // const csvHeaders = ['username', 'password']
    const csvStream = csv.format()
    const writableStream = fs.createWriteStream(path.join(__dirname, `${currentBatch}-teacherLogins.csv`))
    csvStream.pipe(writableStream)
    // csvStream.write(csvHeaders)
    let batchIndex = 0
    while (batchIndex < batchSize) {
      batchIndex++
      csvStream.write([`teacher${teacherIndex}`, 'password'])
      teacherIndex++
    }
    csvStream.end()
    currentBatch++
  }
}
function (done) {
                // Form the filename with the table name as the subdirectory and the base of the filename
                // then th segemnt and the file within the segment
                var fileName = table + "-" + segment + "-" + fileCount + ".csv";
                if (compressed) {
                    fileName += ".gz";
                }

                csvStream = csv.createWriteStream({ headers: true, maxBufferSize: 10000 });

                var writableStream;
                if (s3Bucket) {
                    var filePath = '';
                    if (s3Path) {
                        filePath += s3Path + "/";
                    }
                    filePath += table + "/" + fileName;
                    writableStream = s3StreamUpload(s3, { Bucket: s3Bucket, Key: filePath }, { concurrent: totalSegments });
                    self.emit(infoEvent, "Starting new file: s3://" + s3Bucket + "/" + filePath);
                }
                else {
                    writableStream = fs.createWriteStream(table + '/' + fileName);
                    self.emit(infoEvent, "Starting new file: " + fileName);
                }
#!/usr/bin/env node
'use strict'

const mongoose = require('mongoose')
mongoose.promise = global.Promise
const LogonEvent = require('../models/logon-event')
const Answers = require('../models/answer')
const csv = require('fast-csv')
const fs = require('fs')
const csvStream = csv.createWriteStream({headers: true})
const writableStream = fs.createWriteStream('out.csv')
const config = require('../config')

writableStream.on('finish', function () {
  console.error('DONE!')
})

csvStream.pipe(writableStream)

mongoose.connect(config.MONGO_CONNECTION_STRING, async function (error) {
  if (error) { console.error(error) }

  let answers

  // extract all complete answers
  try {
function loadVcvValues(vcvReadStream, factors){
    var deferred = Q.defer();
    let correlIds = factors.getCorrelFactorIds();
    console.log('Load vcv data for Arria');
    csv
    .fromStream(vcvReadStream)
    .on("data", function(row){
        // check factors are in key factors
        if (correlIds.includes(row[0]) && correlIds.includes(row[1])){
            // see if variance
            if (row[0] == row[1]){
                let ids = FactorCollection.convertFromCorrelId(row[0])
                factors.setVariance(parseFloat(row[2]), ids[0], ids[1]);
                if (row[0] == factors.shockedFactorId){
                    factors.setCovariance(parseFloat(row[2]), factors.shockedFactorId);
                }
            } // else correl 
            else {
                if (row.slice(0,2).includes(factors.shockedFactorId)){
                    let otherFactor = (row[0] == factors.shockedFactorId) ? row[1] : row[0];
                    let ids = FactorCollection.convertFromCorrelId(otherFactor)
var field = []; 
var timeStamp = 0;
var timeNow = new Date();
var msDays = 1000 * 60 * 60 * 24;   //Number of milliseconds in a day.
var msMinutes = 1000 * 60;          //Number of milliseconds in a minute. 


var alarmRecords = 0;
var alarmRecord = [""];
var lastKept = 0;

//Load alarms logfile to make sure that these records not deleted.
// If alarms logfile does not exist, ignore.
utils.log('Reading alarms logfile: ' + alarmsLogFile );
if ( utils.fileExists( alarmsLogFile ) ) {
    csv
        .fromPath( alarmsLogFile )
        .on("data", function(data) {
            record = data.toString();
            field = record.split(',');
            timeStamp = Date.parse( field[0] );
            alarmRecord[ alarmRecords ] = field[0];
            //process.stdout.write( alarmRecords + ": " + timeStamp + "-" + record + '\r');
            alarmRecords++;
        })
        .on("end", function(){
            utils.log("\n Done");
            //Display alarm logfile records.
            /* if( verbose ) {
                utils.log( 'Displaying loaded alarm records...');
                for (var i = 0; i < alarmRecords; i++) {
                    utils.log( 'alarmRecord[' + i + ']: ' + alarmRecord[i] );
const fs = require('fs');
const csv = require('fast-csv');
require('sepia'); /* eslint import/no-extraneous-dependencies: [0] */
require('dotenv').config();

const twitter = require('../common/lib/twitter');

// const { getRank } = require('../common/lib/similarweb.js');

const filename = './common/data/dapps.csv';
const apps = [];

csv
  .fromPath(filename, {
    headers: true,
  })
  .on('data', async (data) => {
    apps.push(data);
  })
  .on('end', async () => {
    await twitter.fetchMentions(apps);

    const writeStream = fs.createWriteStream('./common/data/dapps-ranked.csv');
    csv.write(apps, { headers: true }).pipe(writeStream);

    console.log('done');
  });
.trim();

    // strip out the metadata at the beginning of the img source
    return image.replace(/^data:image\/jpeg;base64,/, '');
  });
};

const processAsin = (ASIN, destFile) => scrapePhoto(ASIN)
  .then(base64Data => fs.outputFile(destFile, Buffer.from(base64Data, 'base64')));

let count = 0; // use count integer for image filenames

const csvPath = process.argv[2];

// parse the csv of orders
csv
  .fromPath(csvPath, { headers: true })
  .on('data', (row) => {
    // get the product's ASIN (unique ID)
    const ASIN = row['ASIN/ISBN'];
    processAsin(ASIN, `product_images/${count}.jpg`).catch((err) => {
      // if there's an error scraping an image for this row, ignore it
      console.error("Oops, couldn't get an image...", err);
    });
    count += 1; // increment count
  })
  .on('end', () => {
    console.log('Done!');
  })
  .on('error', (error) => {
    console.error(error);
  });
}
            if (rows.length >= 5000 || (end && rows.length)) {
                sendToDB(rows.splice(0, 0), callback);
                rows = [];
            }
        }

        function sendToDB(data, callback) {
            // Send your data to the db
            console.log(data.length);
            callback();
        }

        var decodeStream = iconv.decodeStream('ISO-8859-1');
        response.pipe(decodeStream);
        var csvStream = csv.parse({
            delimiter: '\t',
            headers: true,
            discardUnmappedColumns: true,
            ignoreEmpty: true,
            trim: true
        });
        decodeStream.pipe(csvStream);
        csvStream.transform(function (data, cb) {
            processRowsInBatches(data, false, cb);
        });
        csvStream
            .on('error', function (error) { console.error(error); })
            .on('finish', function () {
                console.log('Finished proccessing stream');
                // Call processRowsInBatches to proccess remaining rows
                processRowsInBatches(undefined, true, function () {
function getLanguageConfig() {
	var read = fs.createReadStream(csvFilePath)
		.pipe(csv.parse(options))
		.on('data', function (data) {  // this function executes once the data has been retrieved
			console.log(data);  // data is already an array
		})
		.on('data-invalid', (err) => console.log("Error! data invalid"))
		.on('end', function (data) {
			console.log('Read finished');
			return data;
		})
	
}
function processFiles({
  bucket,
  key,
  transform,
  currentFileNum = 0,
  lastFileNum = 0,
  arn = null,
  retries = 0
}) {
  const maxRetries = 5
  const nextFileNum = (currentFileNum < lastFileNum) ? currentFileNum + 1 : null

  // CSV stream from file
  const csvStream = csv.parse({ headers: true, objectMode: true })
  const _key = `${key}${currentFileNum}.csv`
  s3.getObject({ Bucket: bucket, Key: _key }).createReadStream().pipe(csvStream)

  console.log(`Processing s3://${bucket}/${_key}`)

  return es.stream(csvStream, transform)
    .then(() => {
      invokeLambda(bucket, _key, nextFileNum, lastFileNum, arn, 0)
    }).catch(() => {
      // if CSV failed, try it again
      if (retries < maxRetries) {
        invokeLambda(bucket, _key, currentFileNum, lastFileNum, arn, retries + 1)
      } else {
        // log and move onto the next one
        console.log(`error: maxRetries hit in file ${currentFileNum}`)
        invokeLambda(bucket, _key, nextFileNum, lastFileNum, arn, 0)

Is your System Free of Underlying Vulnerabilities?
Find Out Now